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Abstract

IMPORTANCE Exposure to early-life adversity alters the structural development of key brain regions
underlying neurodevelopmental impairments. The association between prenatal exposure to
adversity and brain structure at birth remains poorly understood.

OBJECTIVE To examine whether prenatal exposure to maternal social disadvantage and
psychosocial stress is associated with neonatal global and regional brain volumes and cortical folding.

DESIGN, SETTING, AND PARTICIPANTS This prospective, longitudinal cohort study included 399
mother-infant dyads of sociodemographically diverse mothers recruited in the first or early second
trimester of pregnancy and their infants, who underwent brain magnetic resonance imaging in the
first weeks of life. Mothers were recruited from local obstetric clinics in St Louis, Missouri from
September 1, 2017, to February 28, 2020.

EXPOSURES Maternal social disadvantage and psychosocial stress in pregnancy.

MAIN OUTCOMES AND MEASURES Confirmatory factor analyses were used to create latent
constructs of maternal social disadvantage (income-to-needs ratio, Area Deprivation Index, Healthy
Eating Index, educational level, and insurance status) and psychosocial stress (Perceived Stress Scale,
Edinburgh Postnatal Depression Scale, Everyday Discrimination Scale, and Stress and Adversity
Inventory). Neonatal cortical and subcortical gray matter, white matter, cerebellum, hippocampus,
and amygdala volumes were generated using semiautomated, age-specific, segmentation pipelines.

RESULTS A total of 280 mothers (mean [SD] age, 29.1 [5.3] years; 170 [60.7%] Black or African
American, 100 [35.7%] White, and 10 [3.6%] other race or ethnicity) and their healthy, term-born
infants (149 [53.2%] male; mean [SD] infant gestational age, 38.6 [1.0] weeks) were included in the
analysis. After covariate adjustment and multiple comparisons correction, greater social
disadvantage was associated with reduced cortical gray matter (unstandardized β = −2.0; 95% CI,
−3.5 to −0.5; P = .01), subcortical gray matter (unstandardized β = −0.4; 95% CI, −0.7 to −0.2;
P = .003), and white matter (unstandardized β = −5.5; 95% CI, −7.8 to −3.3; P < .001) volumes and
cortical folding (unstandardized β = −0.03; 95% CI, −0.04 to −0.01; P < .001). Psychosocial stress
showed no association with brain metrics. Although social disadvantage accounted for an additional
2.3% of the variance of the left hippocampus (unstandardized β = −0.03; 95% CI, −0.05 to −0.01),
2.3% of the right hippocampus (unstandardized β = −0.03; 95% CI, −0.05 to −0.01), 3.1% of the left
amygdala (unstandardized β = −0.02; 95% CI, −0.03 to −0.01), and 2.9% of the right amygdala
(unstandardized β = −0.02; 95% CI, −0.03 to −0.01), no regional effects were found after accounting
for total brain volume.
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Question Is prenatal exposure to
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Abstract (continued)

CONCLUSIONS AND RELEVANCE In this baseline assessment of an ongoing cohort study, prenatal
social disadvantage was associated with global reductions in brain volumes and cortical folding at
birth. No regional specificity for the hippocampus or amygdala was detected. Results highlight that
associations between poverty and brain development begin in utero and are evident early in life.
These findings emphasize that preventive interventions that support fetal brain development should
address parental socioeconomic hardships.
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Introduction

Childhood exposure to early-life adversity (ELA), such as poverty, parental psychopathology, and
psychosocial or physiological stress, is a well-described risk factor for adverse neurodevelopmental,
socioemotional, and health outcomes.1-5 The pathways by which ELA is biologically embedded are
complex and incompletely understood, with hypotheses centered on the effects of material
deprivation, environmental exposures, and stressful psychosocial experiences on the hypothalamic-
pituitary-adrenal (HPA) axis and systemic inflammation.3,6-8 Human and animal studies2,7,9-11 posit
altered structural brain development as a key mechanism by which ELA contributes to poor
outcomes. Magnetic resonance imaging (MRI) studies12-17 suggest that poverty in early childhood is
associated with reduced cortical gray and white matter, hippocampus, and amygdala volumes at
school age. In turn, reduced cortical and hippocampal volumes in childhood mediate associations
between ELA (eg, poverty and family stress) and cognitive and behavioral impairments.16-19 Despite
clear and compelling links between ELA and childhood neurodevelopment,1-4 much less is known
about its prenatal effects.

The prenatal period is a particularly vulnerable stage of brain development,20,21 containing most
neurogenesis and neuronal migration, with ongoing synaptogenesis, pruning, and myelination
throughout the second and third trimesters.22 A small but growing body of literature demonstrates
lasting consequences of prenatal exposure to ELA on childhood outcomes, including cognitive delays
and externalizing disorders.23-25 However, few studies have explored the association between
prenatal ELA and brain outcomes at birth, and cumulative or dimensional models have rarely been
applied.26 The extant prenatal literature has largely conducted parallel lines of research
concentrating on specific factors, including maternal alcohol or other substance use, health
conditions, or psychosocial stress (ie, mood or affect problems, stress, and trauma).27 Few studies
have examined prenatal exposure to poverty or multiple other factors,26,27 despite their overlapping
findings.28

To date, studies29-31 investigating maternal perinatal psychosocial stress in association with
neonatal brain volumes in healthy infants have focused on the hippocampus and amygdala, with
differential findings for offspring sex, exposures, and the timing of those exposures. Maternal
depression and/or stress during pregnancy were associated with altered hippocampus, amygdala,
and cerebellum volumes and cortical folding in utero and shortly after birth.30-33 These studies
reported negative associations between maternal psychosocial stress and income,29,31 but they
represented populations of higher socioeconomic status (SES) and/or did not consistently control for
SES.32,33 Although studies of early childhood SES also demonstrate consistent associations with
hippocampus volume,2,8 limited fetal and neonatal MRI investigations have found an association
between lower parental SES in pregnancy and global metrics, including altered cortical gray matter
volumes,34-36 increased gyrification,34 and decreased white matter, deep gray matter, cerebellum,
and brainstem volumes.34-36 Independent of maternal educational level, maternal smoking and
psychiatric history in pregnancy have been found to explain variability in neonatal brain volumes.36

Given the US rates of childhood poverty (16%)37 and maternal perinatal mood disorders (14%
for depression and 11%-20% for anxiety),38 prenatal ELA likely affects a significant proportion of the
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population. Furthermore, pregnant women with low incomes are at disproportionately greater risk
of psychiatric disorders39,40 and stress during pregnancy.41 Consequently, it is essential to evaluate
the contributions of psychosocial stress and poverty to in utero brain development in order to design
preventive strategies.

We addressed this critical gap by quantifying prenatal exposures to latent constructs of
maternal psychosocial stress (depression, stress, and lifetime interpersonal traumas or stressors) and
social disadvantage (broad measure of SES and related factors) along with maternal health, tobacco
use, and marijuana exposure in healthy, term-born infants. We investigated the associations between
these factors and neonatal brain volumes at birth (global measures of cortical and subcortical gray
matter, white matter, and cerebellar volume and cortical folding) along with 2 structures of interest
(amygdala and hippocampus). On the basis of existing literature, we hypothesized that greater
maternal social disadvantage and psychosocial stress would each be independently associated with
lower neonatal brain volumes and reduced cortical folding. Given the sensitivity of subcortical
structures to HPA axis activation,8,42,43 we expected to observe regionally specific susceptibility of
the hippocampus and amygdala to social disadvantage and psychosocial stress exposure.

Methods

Study Design and Population
In this longitudinal, observational, multiwave, multimethod collaboration, a cohort of pregnant
women who participated in a large-scale study of preterm birth44 within the Washington University
in St Louis March of Dimes Prematurity Research Center were recruited from September 1, 2017, to
February 28, 2020. Women from the parent study (n = 663) were invited to participate in this
investigation (see Luby et al45 for cohort details) with the following exclusion criteria: multiple
gestation, infections known to cause congenital disease (eg, syphilis), and/or alcohol or drug use
other than tobacco and marijuana. A total of 395 eligible participating mothers completed
assessments during each trimester of pregnancy and at delivery. Medical data from mothers and their
399 singleton offspring (4 mothers had 2 singleton births during the recruitment period) were
collected from questionnaires and medical record review. In order to assess the contributions of
racial and ethnic discrimination and inequities, pregnant mothers’ self-reported race and ethnicity
were extracted from the medical record. The following options were provided for race: American
Indian/Alaskan Native, Asian, Black or African American, Native Hawaiian/Pacific Islander, White,
unknown, or other (free text), and the following options for ethnicity: Hispanic/Latina, non-Hispanic/
Latina, or unknown/not applicable. Neonatal brain MRI was performed in the first weeks of life only
on infants born before the COVID-19 pandemic. Exclusion criteria included premature birth (<37
weeks’ gestation), neonatal intensive care unit admission for more than 7 days, birth weight less than
2000 g, or evidence of brain injury on MRI. After exclusion and data quality criteria were applied,
280 mother-infant dyads were included in current analysis (eFigure in the Supplement). Study
procedures were reviewed and approved by the Washington University Institutional Review Board.
Written informed consent was obtained for each participant, with written parental informed consent
for each infant. The study followed the Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) reporting guideline for cohort studies.46

Measures
Maternal Social Disadvantage and Psychosocial Stress
Confirmatory factor analysis was used to derive 2 latent maternal social disadvantage and maternal
psychosocial stress constructs.45 The following maternal measures were included in the social
disadvantage construct: health insurance status (grouped by private insurance or public or no
insurance), highest educational level, income-to-needs ratio47 in each trimester, national Area
Deprivation Index percentile at birth,48 and Healthy Eating Index.49 The following maternal
psychological measures were included in the psychosocial stress construct: Perceived Stress Scale50
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and Edinburgh Postnatal Depression Scale (EPDS)51 in each trimester, Stress and Adversity
Inventory,52 and Everyday Discrimination Scale (eMethods in the Supplement).53

Maternal Comorbidities and Exposures
A maternal medical risk score was calculated for each participant using questionnaires and medical
record review.54 This validated index55 is a sum of weighted comorbidities, including advanced age,
cardiac disease, and preeclampsia, with higher scores predicting increased risk of severe morbidity
or mortality. Frequency of tobacco and marijuana use (none, some, or heavy) (Table 1) was self-
reported on questionnaires at each trimester. At the discretion of the treating clinician, a subset of
mothers underwent urine drug screens during prenatal clinical care. Marijuana exposure (any vs
none) was, therefore, based on self-report and/or a urine drug screen result positive for
tetrahydrocannabinol metabolites. Because maternal prepregnancy body mass index, marijuana
exposure, and tobacco use are not included in the maternal medical risk index, they were
independently evaluated as covariates of interest.

MRI Data Collection, Preprocessing, and Volumetric Measures
All MRIs were performed within the first weeks of life without sedation during natural sleep.
Magnetic resonance imaging data were collected using a Prisma 3T scanner and 64-channel head coil
(Siemens). Infants (n = 10) without high-quality (ie, low motion) structural data as determined by an
imaging scientist (D.A.) and pediatric neurologist (C.D.S.) were excluded. The Melbourne Children’s
Regional Infant Brain Atlas Surface segmentation and surface extraction toolkit was used to generate
segmentations into white and gray matter, cerebellum, brainstem, and subcortical gray matter and
surface-based cortical parcellations from preprocessed T2-weighted images.56,57 See the eMethods
in the Supplement for sequence parameters, preprocessing, and analysis procedures.

Brain volumes of interest included total cortical and subcortical gray matter, white matter, and
cerebellum, in addition to right and left hippocampi and amygdalae. Total raw volumes for all
structures were analyzed, along with standardized regional volumes for the hippocampi and
amygdalae generated by dividing by total brain volume, as is common in neonatal neuroimaging
studies.30,33 Cortical folding was measured using the total Gyrification Index (GI), a ratio of the
cortical surface area divided by the cortical hull surface area.58

Statistical Analysis
Analyses were performed using SPSS software, version 28 (IBM Corporation). Potential covariates
were explored using Pearson correlation and 2-tailed, unpaired t tests. Maternal tobacco use, infant
sex, birth weight, and postmenstrual age (PMA) at MRI were associated with brain volumes of
interest (eTable 1 in the Supplement). These covariates and social disadvantage and psychosocial
stress factor scores were included as independent variables in hierarchical linear regression analyses,
each with brain volumes or cortical folding as the dependent variable. For each volume of interest,
the first step accounted for maternal tobacco use (no use = 0), infant sex (female = 0), birth weight,
and PMA at MRI. The social disadvantage and psychosocial stress factors were entered
simultaneously in the second step of the model to determine the unique, independent proportion of
variance (change in R2) explained in brain volume and folding outcomes over and above covariate
factors. Regression models were checked for linearity, homoscedasticity, and absence of
multicollinearity, and the residuals approximated a normal distribution. Results for primary outcomes
were corrected for multiple comparisons using the Benjamini-Hochberg false discovery rate
procedure.59 P values and false discovery rate–adjusted P values <.05 were considered to be
statistically significant.
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Table 1. Social Background and Infant Clinical Characteristics of the Sample

Characteristic Data (N = 280)
Maternal age, mean (SD) [range], y 29.1 (5.3) [18.7 to 41.8]

Maternal race and ethnicity (self-identified), No. (%)

Black/African American 170 (60.7)

White 100 (35.7)

Othera 10 (3.6)

Maternal medical risk score, median (IQR) [range] 1.0 (0.0 to 2.0) [0 to 8]

Self-reported maternal tobacco use, No. (%)

Heavy use (≥6 cigarettes daily) 16 (5.7)

Some use (<6 cigarettes daily) 20 (7.1)

None 244 (87.1)

Any maternal marijuana exposure, No. (%) 74 (26.4)

Positive urine drug screen result, No. (%)b 59 (21.1)

Self-reported maternal marijuana use, No. (%)

Daily use 21 (7.5)

Some use (less than daily) 15 (5.4)

None 244 (87.1)

Insurance, No. (%)

Medicaid or Medicare 105 (37.6)

Individual or group health insurance 144 (51.4)

Uninsured 31 (11.0)

Married mothers, No. (%) 99 (35.4)

Maternal educational level (n = 272), No. (%)

Did not complete high school 28 (10.3)

Finished high school or GED 68 (25.0)

Some college or vocational school 83 (30.5)

College degree (4 y) 34 (12.5)

Graduate degree 59 (21.7)

Income-to-needs ratio, median (IQR) [range]

Trimester

First (n = 271) 1.25 (0.89 to 3.80) [0.43 to 12.15]

Second (n = 216) 1.65 (0.91 to 5.17) [0.38 to 12.15]

Third (n = 238) 1.46 (0.89 to 5.17) [0.35 to 11.83]

Area Deprivation Index score, mean (SD) [range] 68.2 (24.9) [1 to 100]

Healthy Eating Index score (n = 223), mean (SD) [range] 58.8 (10.0) [33.0 to 80.7]

Social disadvantage, mean (SD) [range] –0.04 (0.97) [–2.2 to 1.5]

Perceived Stress Scale score, mean (SD) [range]

Trimester

First (n = 276) 13.1 (7.2) [0 to 35]

Second (n = 215) 12.9 (7.5) [0 to 36]

Third (n = 234) 12.5 (7.3) [0 to 37]

Edinburgh Postpartum Depression Scale score, median (IQR) [range]

Trimester

First (n = 278) 4.0 (1.0 to 7.0) [0 to 25]

Second (n = 235) 3.0 (1.0 to 7.0) [0 to 20]

Third (n = 239) 3.0 (1.0 to 6.0) [0 to 25]

STRAIN (n = 263), median (IQR) [range]

Stressful event count 6.0 (3.0 to 11.0) [0 to 30]

Weighted severity 15.0 (7.0 to 29.0) [0 to 99]

Everyday Discrimination Scale score (n = 261), median (IQR) [range]c 1.0 (1.0 to 1.8) [1 to 6]

Psychosocial stress, mean (SD) [range] –.11 (.88) [–1.7 to 3.7]

Infant gestational age, mean (SD) [range], wk 38.6 (1.0) [37 to 41]

Postmenstrual age at MRI, mean (SD) [range], wk 41.7 (1.3) [38 to 45]

Infant sex (male), No. (%) 149 (53.2)

Infant birth weight, mean (SD) [range], g 3257.7 (487.7) [2200 to 4627]

Abbreviation: STRAIN, Stress and Adversity Inventory.
a Other includes Asian (n = 5), Latina (n = 3), Middle

Eastern (n = 1), and Asian and White (n = 1).
b A total of 119 mothers (42.5%) had urine drug screen

data during pregnancy.
c Everyday Discrimination Scale was scored for

experiences of racial discrimination only (otherwise
coded as 0).
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Results

Infant Characteristics
A total of 280 mothers (mean [SD] age, 29.1 [5.3] years; 170 [60.7%] Black/African American, 100
[35.7%] White, and 10 [3.6%] of other race or ethnicity) and their healthy, term-born infants (149
[53.2%] male; mean [SD] infant gestational age, 38.6 [1.0] weeks) were included in the study
(Table 1). Male infants had a larger mean (SD) birth weight (3316 [470] g) than female infants (3191
[500] g) (P = .03) (eTable 2 in the Supplement). No sex differences were found for PMA at MRI, social
disadvantage, and psychosocial stress (eTable 2 in the Supplement). At the time of MRI, infants had
a mean (SD) PMA of 42.0 (1.3) weeks, which was slightly younger than infants excluded because of
low-quality or missing MRI data. No other differences were found between the 2 groups (eTable 3 in
the Supplement).

Prenatal Life Adversity
Table 1 summarizes the prenatal life adversity characteristics of the sample, including the latent
constructs of maternal social disadvantage and psychosocial stress. A total of 136 mothers (48.6%)
in the cohort had public insurance or no health insurance. Median income-to-needs ratios at each
trimester ranged from 1.25 to 1.65 (minimum, 0.38; maximum, 12.15). The median EPDS scores at
each trimester ranged from 3.0 to 4.0 (minimum, 0; maximum, 25). Social disadvantage was
correlated with more maternal psychosocial stress (r = 0.43, P < .001). Differences between this full-
term cohort and the full sample (from which the factors were derived)45 were predominantly driven
by infants born prematurely (eTable 4 in the Supplement).

MRI Measures
Brain Volumes
Table 2 summarizes the second, final step of the hierarchical linear regression results (full results in
eTable 5 in the Supplement). In step 1, female sex, lower birth weight, and younger PMA at MRI were
associated with smaller cortical (sex: β = 0.23, P < .001; birth weight: β = 0.29, P < .001; and PMA
at MRI: β = 0.54, P < .001) and subcortical gray matter (sex: β = 0.23, P < .001; birth weight:
β = 0.25, P < .001; and PMA at MRI: β = 0.54, P < .001), white matter (sex: β = 0.28, P < .001; birth
weight: β = 0.27, P < .001; and PMA at MRI: β = 0.22, P < .001), and cerebellar (sex: β = 0.23,
P < .001; birth weight: β = 0.21, P < .001; and PMA at MRI: β = 0.62, P < .001) volumes (eTable 5 in
the Supplement). Tobacco use was associated with reduced subcortical gray (β = −0.11, P = .01) and
white matter (β = −0.12, P = .02) (eTable 5 in the Supplement). In step 2, greater social disadvantage
was associated with reduced volumes across all tissue types (Table 2 and Figure 1), except for the
cerebellum (eTable 5 in the Supplement). Social disadvantage accounted for an additional 1.6% of the
variance for total cortical gray matter (unstandardized β = –2.0; 95% CI, –3.5 to –0.5), 2.6% for
subcortical gray matter (unstandardized β = –0.4; 95% CI, –0.7 to –0.2), and 7% for white matter
(unstandardized β = –5.5; 95% CI, –7.8 to –3.3) (eTable 5 in the Supplement). The contribution of
psychosocial stress was not significant (Table 2). A similar pattern of results was found for total brain
volume (eTable 6 in the Supplement). Post hoc analyses showed similar results for the left and right
hemispheric cortical gray matter, cerebral white matter, and cerebellar hemispheres (eTable 7 in the
Supplement).

Hippocampus and Amygdala
In step 1, female sex, lower birth weight, and younger PMA at MRI were associated with smaller right
hippocampus (sex: β = 0.13, P = .02; birth weight: β = 0.20, P < .001; and PMA at MRI: β = 0.28,
P < .001), left hippocampus (sex: β = 0.15, P = .006; birth weight: β = 0.16, P = .005; and PMA at
MRI: β = 0.31, P < .001), right amygdala (sex: β = 0.27, P < .001; birth weight: β = 0.23, P < .001; and
PMA at MRI: β = 0.40, P < .001) volumes, and left amygdala (sex: β = 0.29, P < .001; birth weight:
β = 0.18, P < .001; and PMA at MRI: β = 0.39, P < .001) volumes (eTable 5 in the Supplement).
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Table 2. Summary of Final Step in Hierarchical Linear Regression Assessing the Association of Maternal Social
Disadvantage and Psychosocial Stress With Structural MRI Measures at Birtha

Variable Standardized β P value Q valueb

Total cortical gray matter (R2 = .56, P < .001)

Sex 0.24 <.001 <.001

Birth weight 0.24 <.001 <.001

PMA at MRI 0.52 <.001 <.001

Tobacco use −0.03 .52 .69

Social disadvantage −0.13 .008 .01

Psychosocial stress −0.02 .59 .64

Total subcortical gray matter (R2 = .56, P < .001)

Sex 0.24 <.001 <.001

Birth weight 0.20 <.001 <.001

PMA at MRI 0.52 <.001 <.001

Tobacco use −0.06 .17 .67

Social disadvantage −0.16 .002 .003

Psychosocial stress −0.05 .30 .60

Total white matter (R2 = .36, P < .001)

Sex 0.29 <.001 <.001

Birth weight 0.18 <.001 .001

PMA at MRI 0.19 <.001 <.001

Tobacco use −0.05 .34 .69

Social disadvantage −0.28 <.001 <.001

Psychosocial stress −0.03 .64 .64

Left hippocampus (R2 = .22, P < .001)

Sex 0.16 .003 .008

Birth weight 0.11 .06 .06

PMA at MRI 0.29 <.001 <.001

Tobacco use −0.03 .57 .70

Social disadvantage −0.18 .007 .01

Psychosocial stress 0.02 .75 .93

Right hippocampus (R2 = .22, P < .001)

Sex 0.14 .01 .02

Birth weight 0.14 .01 .02

PMA at MRI 0.26 <.001 <.001

Tobacco use −0.06 .29 .58

Social disadvantage −0.18 .007 .01

Psychosocial stress 0.01 .82 .93

Left amygdala (R2 = .41, P < .001)

Sex 0.30 <.001 <.001

Birth weight 0.13 .01 .02

PMA at MRI 0.37 <.001 <.001

Tobacco use −0.08 .09 .58

Social disadvantage −0.20 <.001 .003

Psychosocial stress 0.005 .92 .93

Right amygdala (R2 = .42, P < .001)

Sex 0.28 <.001 <.001

Birth weight 0.17 <.001 .003

PMA at MRI 0.38 <.001 <.001

Tobacco use −0.06 .25 .58

Social disadvantage −0.19 <.001 .003

Psychosocial stress 0.005 .93 .93

(continued)
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Tobacco use was associated with reduced amygdalae volumes bilaterally (left amygdala: β = −0.13,
P = .007; right amygdala: β = −0.11, P = .03) (eTable 5 in the Supplement). In step 2, greater social
disadvantage was associated with reduced volumes for subcortical regions of interest and accounted
for an additional 2.3% to 3.1% of the variance (Table 2 and Figure 2). Social disadvantage accounted
for an additional 2.3% of the variance of the left hippocampus (unstandardized β = –0.03; 95% CI,
–0.05 to –0.01), 2.3% of the right hippocampus (unstandardized β = –0.03; 95% CI, –0.05 to –0.01),
3.1% of the left amygdala (unstandardized β = –0.02; 95% CI, –0.03 to –0.01), and 2.9% of the right
amygdala (unstandardized β = –0.02; 95% CI, –0.03 to –0.01) (eTable 5 in the Supplement). The
contribution of psychosocial stress was not significant (Table 2). After standardization of
hippocampal and amygdalae volumes using total brain volume, no significant associations were
found with any covariates, social disadvantage, or psychosocial stress (eTable 5 in the Supplement).

Table 2. Summary of Final Step in Hierarchical Linear Regression Assessing the Association of Maternal Social
Disadvantage and Psychosocial Stress With Structural MRI Measures at Birtha (continued)

Variable Standardized β P value Q valueb

Gyrification index (R2 = .31, P < .001)

Sex 0.12 .03 .03

Birth weight 0.10 .07 .07

PMA at MRI 0.40 <.001 <.001

Tobacco use 0.10 .07 .07

Social disadvantage −0.26 <.001 <.001

Psychosocial stress 0.04 .46 .46

Abbreviations: MRI, magnetic resonance imaging;
PMA, postmenstrual age.
a Results for all steps of hierarchical linear regression

are given in full in eTable 5 in the Supplement.
b Q values represent P values after correction for

multiple comparisons using the Benjamini-Hochberg
false discovery rate procedure.

Figure 1. Correlation Between Total Brain Volume and Maternal Social Disadvantage Factor
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Cortical Folding
In step 1, female sex, smaller birth weight, and younger PMA at MRI were associated with diminished
GI (sex: β = 0.10, P = .05; birth weight: β = 0.17, P = .002; PMA at MRI: β = 0.43, P < .001) (eTable 5
in the Supplement). In step 2, higher social disadvantage was associated with reduced GI (β = −0.26,
P < .001) and accounted for an additional 4.8% of the variance (unstandardized β = –0.03; 95% CI,
–0.04 to –0.01) (Table 2 and Figure 3). Tobacco use and psychosocial stress were not significantly
associated with cortical folding.

Figure 2. Correlation Between Regional Brain Volume and Maternal Social Disadvantage Factor
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Figure 3. Correlation Between the Gyrification Index and Maternal Social Disadvantage Factor
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Discussion

This cohort study is one of the largest investigations of the fetal origins of health and disease
beginning in the first trimester of gestation using comprehensive, multidimensional measures of
maternal social disadvantage and psychosocial stress to assess associations with brain morphometry
at birth. In healthy, term-born infants, prenatal exposure to social disadvantage demonstrated
inverse associations with all brain tissue types, including reduced cortical and subcortical gray and
white matter and decreased cortical folding in the first weeks of life. After accounting for global
differences in brain volume, no regionally specific associations were found between social
disadvantage or psychosocial stress and the hippocampus and amygdala. In our cohort, exposure to
greater social disadvantage in utero appeared to play a greater role in brain structural development
than maternal psychosocial stress.

We provide evidence of the association of prenatal exposure to social disadvantage with
differences in global brain structural development at birth. Results persisted after accounting for
infant birth weight, which also is associated with SES.60 Likely because of rigorous covariate control,
effect sizes were small but consistent with reports in other samples of infants35 and children.16

Furthermore, findings are consistent with cross-sectional studies that found that a lower income-to-
needs ratio was associated with reduced total cortical and subcortical gray matter in infants at 5
weeks35 and 5 months of age.13 Findings also align with work that reported regional and widespread
reductions in cortical folding associated with lower SES among older children.14,61 Of note, we extend
prior work13,14,25,61 to show that the associations between poverty and reduced brain volumes begin
in utero and are evident in the first weeks of life. Social disadvantage was most strongly associated
with reduced white matter volume, explaining 7% of the variance. This finding highlights the timing
of prenatal exposure to poverty and the vulnerability of white matter as myelination occurs rapidly
beginning at 28 to 29 weeks of gestation.62,63 During fetal development, oligodendrocyte progenitor
cells and subplate neurons are sensitive to oxidative stress, which may have cascading effects on
pruning and/or crossing fibers and subsequent white matter volume at birth.22,64

Although greater social disadvantage during pregnancy was associated with global reductions
in infant brain volume and cortical folding, the amygdalae and hippocampi were not preferentially
associated with social disadvantage or psychosocial stress. Differences between our findings and
studies reporting on the effects of poverty on these subcortical structures may be attributed to prior
works13,32,35 relying on single measures of SES, assessing brain development at later time points,
and/or including higher SES samples. We interpret current study findings as evidence of a more
widespread alteration in brain growth and development in the setting of exposure to significant,
multifactorial socioeconomic disadvantage in utero.

This study addresses the independent contributions of maternal SES and psychosocial stress
during pregnancy on offspring brain morphometry at birth.65 Consistent with other findings,66 our
measure of social disadvantage correlated with psychosocial stress during pregnancy. However,
prenatal exposure to social disadvantage was associated with brain volumes and cortical folding,
whereas psychosocial stress was not significant. Current results could reflect the fact that
participants were oversampled for mothers with greater social disadvantage. We also assessed
multiple aspects of social adversity, which when examined together are likely more impactful.67,68

We anticipate our results will be generalizable to other socioeconomically diverse (but otherwise
relatively healthy) US populations. Results may not generalize to populations that face different kinds
of adversity or those with higher SES.

Although the precise mechanism remains unclear, postnatal ELA studies11,69 posit that long-
term deprivation of resources and/or psychosocial stress overstimulate the HPA axis and the immune
system, leading to altered brain-behavior outcomes. Fetal sensitivity to glucocorticoids is a leading
hypothesis to explain the regional effects of prenatal ELA on the hippocampus, amygdala, and
prefrontal cortex.42,43,70-72 In addition, changes in maternal immune activation incited by prenatal
ELA may contribute globally to brain development in utero via several mechanisms, including
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increased synaptic pruning, altered neurotransmitter profiles, impaired placental delivery of
neurotrophic factors, and placental epigenetic programming.73,74

Through the above mechanisms, including changes in cortisol production and systemic
inflammation, poverty and psychosocial stress likely have overlapping effects on the developing
brain.3,11,75,76 Additional contributing factors for mothers living in poverty may include specific
macronutrient and micronutrient deficiencies77 and direct neurotoxic and indirect
neuroinflammatory effects of household, outdoor, and water pollutants, such as lead78 or air
pollution.79 Future directions to elucidate causal mechanisms of neurodevelopmental and
socioemotional impairments include examining specific maternal factors, such as inflammatory
cytokines and cortisol,42,80 in the context of maternal psychological stress, SES, and related
nutritional and environmental exposures. There is further work to be done to clearly establish links
between prenatal ELA, brain morphometry findings, and childhood outcomes.81,82

Limitations
Our findings should be interpreted in light of some study limitations. First, we assessed maternal
depression with the EPDS. Although the EPDS is a validated measure, the lack of a semistructured
interview may have led to symptom underreporting. Second, this study did not assess other
environmental exposures, such as lead and air pollution, which may be linked with poverty and
subsequent brain development. Third, we did not investigate the role of race in this analysis because
of the collinearity between race and social disadvantage.45 This sample reflects the clear link
between racial inequities and social disadvantage in the US and provides justification for including a
measure of racial discrimination.

Conclusions

In this cohort study, we examined the independent roles of maternal social disadvantage and
psychosocial stress during pregnancy and found global associations between social disadvantage and
neonatal brain volumetric and folding measures. No association was found between brain volumes
and psychosocial stress. Of note, results highlight that associations between poverty and
neurodevelopment begin in utero and are evident in the first weeks of life. These findings may inform
future randomized clinical trials of poverty reduction and family-based interventions to address the
material and psychosocial needs of expectant parents and improve neonatal brain outcomes
at birth.83
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