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A longitudinal big data approach for precision 
health 
Sophia Miryam Schüssler-Fiorenza Rose  1,2,3,16, Kévin Contrepois  1,16, Kegan J. Moneghetti4,5,6, 
Wenyu Zhou1, Tejaswini Mishra  1, Samson Mataraso  7,8, Orit Dagan-Rosenfeld1, 
Ariel B. Ganz1, Jessilyn Dunn1,9, Daniel Hornburg1, Shannon Rego1, Dalia Perelman1, 
Sara Ahadi1, M. Reza Sailani1, Yanjiao Zhou10,11, Shana R. Leopold10, Jieming Chen12, 
Melanie Ashland1, Jeffrey W. Christle4,5, Monika Avina1, Patricia Limcaoco1, Camilo Ruiz13, 
Marilyn Tan14, Atul J. Butte  12, George M. Weinstock  10, George M. Slavich  15, Erica Sodergren10, 

1,4*Tracey L. McLaughlin14, Francois Haddad  4,5* and Michael P. Snyder 

Precision health relies on the ability to assess disease risk at an individual level, detect early preclinical conditions and initiate 
preventive strategies. Recent technological advances in omics and wearable monitoring enable deep molecular and physiologi-
cal profiling and may provide important tools for precision health. We explored the ability of deep longitudinal profiling to make 
health-related discoveries, identify clinically relevant molecular pathways and affect behavior in a prospective longitudinal 
cohort (n= 109) enriched for risk of type 2 diabetes mellitus. The cohort underwent integrative personalized omics profil-
ing from samples collected quarterly for up to 8 years (median, 2.8 years) using clinical measures and emerging technologies 
including genome, immunome, transcriptome, proteome, metabolome, microbiome and wearable monitoring. We discovered 
more than 67 clinically actionable health discoveries and identified multiple molecular pathways associated with metabolic, 
cardiovascular and oncologic pathophysiology. We developed prediction models for insulin resistance by using omics measure-
ments, illustrating their potential to replace burdensome tests. Finally, study participation led the majority of participants to 
implement diet and exercise changes. Altogether, we conclude that deep longitudinal profiling can lead to actionable health 
discoveries and provide relevant information for precision health. 

Precision health and medicine are entering a new era in which 
wearable sensors, omics technologies and computational meth-
ods have the potential to improve health and lead to mecha-

nistic discoveries1,2. Emerging technologies such as longitudinal 
multi-omics profiling combined with clinical measures can com-
prehensively assess health and identify deviations from healthy 
baselines that may improve disease risk prediction and early detec-
tion. Connecting longitudinal multi-omics profiling with clinical 
assessment is also important for developing a new taxonomy of dis-
ease on the basis of molecular measures1. 

Despite this promise, few studies have leveraged emerging tech-
nologies and longitudinal profiling to manage health and identify 
disease markers. Previous efforts included our study of a single indi-
vidual in which longitudinal multi-omics profiling over 14 months 
captured the individual’s transition to diabetes on a deep molecu-
lar level3. A recent study of 108 individuals followed for 9 months 
using various omic technologies revealed several health-related 

findings4. A cross-sectional study used genome sequencing, metab-
olomics and advanced imaging to identify individuals at risk for 
age-related chronic disease5. These studies had limited sample size, 
lacked meaningful longitudinal profiling or performed only limited 
analysis of health information. We have also demonstrated the use 
of wearable devices to detect infections2 and identify early glucose 
dysregulation6 and population-based studies evaluating arrythmia 
detection are underway7. 

In the present study, we longitudinally profiled 109 participants 
at risk for diabetes mellitus (DM) (Fig. 1), performing quarterly 
clinical laboratory tests and multi-omics assessments. In addition, 
individuals underwent exercise testing, enhanced cardiovascular 
imaging and physiological testing, wearable sensor monitoring and 
completed various surveys. 

The study objectives were three-fold. We first evaluated the 
usefulness of emerging technologies in combination with stan-
dard and enhanced clinical tests to detect diseases early. We then 
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Fig. 1 | Study design and data collection. Overview of the in-depth longitudinal phenotyping used to determine health risk and status. Data types were 
categorized as: standard (blue), enhanced (purple) and emerging (red) tests. PBMCs, peripheral blood mononuclear cells; HbA1C, glycated hemoglobin; 
OGTT, oral glucose tolerance test; SSPG, steady-state plasma glucose; CBC, complete blood count; hsCRP, high sensitivity C-reactive protein; CVD, 
cardiovascular disease. 

characterized multi-omics associations with clinical pathophysi-
ologies including glucose and insulin dysregulation, inflammation 
and cardiovascular risk; we also evaluated the ability of multi-omics 
measures to predict insulin resistance and response to glucose load. 
Last, we examined how participation affected health habits. 

Results 
Summary of research design and cohort. A 109-person cohort 
enriched for individuals at risk for DM (Supplementary Table 
1 and Extended Data Fig. 1a) underwent quarterly longitudinal 
profiling for up to 8 years (median 2.8 years) using standard and 
enhanced clinical measures and emerging assays. (Fig. 1). Emerging 
tests included molecular profiling of the genome, gene expression 
(transcriptome), proteins (proteome), immune proteins (immu-
nome), small molecules (metabolome) and gut microbes (micro-
biome), and wearable monitoring including continuous glucose 
monitoring (CGM)6. Our study was designed to capture transi-
tions from normoglycemic to pre-DM and from pre-DM to DM. 
Thus, in addition to standard measures such as fasting plasma glu-
cose (FPG, reflects steady-state glucose metabolism8) and glycated 
hemoglobin (HbA1C, reflects 3-month average glucose), enhanced 
measures included the oral glucose tolerance test (OGTT, reflects 
response to glucose load9) with insulin secretion assessment (beta-
cell function) and the modified insulin suppression test measuring 
steady-state plasma glucose (SSPG, a measure of peripheral insulin 
resistance). We also performed enhanced cardiovascular profiling 
including vascular ultrasound, echocardiography, cardiopulmo-
nary exercise testing and cardiovascular disease protein markers. 
Technical details are provided in the methods and our integrated 
Human Microbiome Project (iHMP) paper10. The full details of the 
clinical laboratory measures, immune proteins and cardiovascular 
biomarkers are provided in Supplementary Table 0. The study was 
approved by the Stanford University Institutional Review Board 
(IRB 23602) and all participants consented. 

The mean age of integrated personalized omics profiling 
(iPOP) participants at initial enrollment was 53.4 ± 9.2 years old. 
Demographic, baseline health and family history characteristics 
are shown in Supplementary Table 1. Genetic ancestry analy-
sis (n = 72) using the 1,000 Genomes Project (1,000GP) data11 
shows that individuals mapped to expected ancestral populations 
(Extended Data Fig. 1b). 

Over the study course, we found over 67 major clinically 
actionable health discoveries spanning metabolism, cardiovas-
cular disease, oncology and hematology, and infectious disease 
(Supplementary Table 2). We demonstrate ways in which longi-
tudinal multi-omics measures can be used to advance precision 
health, including by illuminating biological pathways under-
lying standard measures, predicting burdensome physiologi-
cal measurements and enabling exploration of mechanisms of 
disease onset. 

Metabolic health profiling. At entry, participants reported their 
DM status. Of the 86 participants (78.9%) who did not report pre-
DM or DM, one had a diagnosis of DM in their health record, 
one had a DM-range HbA1C and 43 individuals (39.4%) had 
laboratory results in the pre-DM range at entry (Fig. 2a). During 
the study, eight more individuals converted to DM as assessed 
by a clinical diagnosis of DM (n = 4), starting a diabetic medi-
cation after a diabetic-range laboratory result (n = 3), and/or 
if they had laboratory results in the diabetic range (n = 6) at 
more than one time point. Five additional participants devel-
oped laboratory abnormalities in the diabetic range at one time 
point, and 12 developed abnormalities in the prediabetic range. 
In addition, two participants had diabetic-range CGM measure-
ments (>2 mg ml−1) who were normoglycemic on FPG, HbA1C 
and OGTT (Supplementary Table 3) indicating that these indi-
viduals have glucose dysregulation that is most easily assessed 
using CGM. 
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Fig. 2 | Clinical and enhanced phenotyping of glucose metabolism, insulin production and resistance. a, Transitions in DM status  
(n= 109). First column, self-reported DM status. Second column, DM status determined by self-report; medical records and study entry 
diabetes-related laboratory measures: FPG, HbA1C and OGTT; prediabetic range (1.0 mg ml−1 ≤ FPG < 1.26 mg ml−1 or 5.7% ≤ HbA1C < 6.5% or 
1.4mg ml−1 ≤ OGTT < 2.0 mg ml−1); diabetic range (FPG ≥ 1.26 mg ml−1 or HbA1C ≥ 6.5% or OGTT (2-h) ≥ 2.0 mg ml−1). Third column, DM history and 
status determined by the initial report and diabetes-related laboratory measures over the course of the study. For FPG to be considered impaired  
or diabetic, two values in these ranges were required over the course of the study, whereas for HbA1C and OGTT only one value was required.  
b, Overlap of diabetic-range laboratory results by participants over the course of the study. Diabetic ranges are as in panel a. c, Violin plots showing 
insulin levels during OGTT at 0, 30 and 120 min, SSPG (n= 43 participants) and glucose disposition index (n= 89 samples from 61 participants) by 
glycemic status determined by OGTT including normoglycemic, impaired fasting glucose only (IFG only: FPG ≥ 1.0 mg ml−1), and impaired glucose 
tolerance (IGT: OGTT ≥ 1.4 mg ml−1). SSPG was measured using the modified insulin suppression test. The disposition index was calculated as the 
insulin secretion rate (ISR) at 30 min times the Matsuda index ((pmol kg−1 min−1/(mg ml−1 × μU ml−1)). A two-sided Wilcoxon  
t-test was used for differential analysis. The violin plots illustrate kernel probability density (that is, the width represents the proportion of the  
data) and the horizontal bar depicts the median of the distribution. d, Heat map showing ISRs that were row standardized and clustered using  
k-means clustering (n= 89 samples from 61 participants). Observations in clusters were ordered by OGTT status. OGTT status, disposition index 
(DI), SSPG (insulin sensitive (IS), SSPG < 1.00 mg ml−1; intermediate, 1.00 mg ml−1 ≤ SSPG < 1.50 mg ml−1; insulin resistant (IR), SSPG ≥ 1.50 mg ml−1) 
and maximum insulin secretion rate (ISR maximum) are indicated on the left-hand side of the heat map. e, Correlation network of multi-omics 
measures associated with the glucose disposition index (n= 89 samples from 61 participants; Benjamini–Hochberg false discover rate (FDR) < 0.1). 
Correlations were calculated using Spearman correlation and considered significant if Bonferroni-corrected P< 0.05. Only networks containing a 
minimum of three molecules were plotted. 
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Value of exome sequencing. Exome sequencing12 provided relevant 
information for diabetes management. Most notable was the discov-
ery of a HNF1A mutation, pathogenic for maturity-onset diabetes of 
the young (MODY), in a participant with DM. This discovery has 
implications for medications13 and the individual decided to have 
their children tested. It was valuable to exclude a MODY mutation 
in a second participant with a DM history concerning for MODY. 
Other discoveries are listed in Supplementary Table 2. 

Enhanced metabolic profiling. DM is a complex disease with various 
underlying pathophysiologies including insulin resistance, pancreatic 
beta-cell dysfunction and abnormal gluconeogenesis14, which can 
have differential effects on standard measures. Over the course of the 
study, 22 participants had at least one test result in the diabetic range 
(Fig. 2b) but few (n=2) had concordance of all three measures. When 
performed simultaneously, FPG-HbA1C and FPG-OGTT were 
in agreement 65.2% and 52.6% of the time, respectively (Extended 
Data Fig. 2a,b), highlighting that DM status varies depending on the 
assessment method. Most participants also underwent insulin sen-
sitivity assessment (n=69); 55% were resistant (SSPG ≥1.5 mg ml−1). 
In addition, insulin secretion during OGTT was assessed in 61 
participants using the C-peptide deconvolution method15 and the 
glucose disposition index was calculated16. On the basis of OGTT 
measurements, participants were categorized into three groups: nor-
moglycemic, impaired fasting glucose only (IFG only) and impaired 
glucose tolerance (IGT). We observed large inter-individual variabil-
ity in insulin levels, insulin resistance and disposition index between 
groups (Fig. 2c). Participants with IGT had higher insulin levels 
120 min post-OGTT test, higher SSPG (more insulin resistant) and a 
lower disposition index. Cluster analysis of the longitudinal pattern of 
insulin secretion rates (ISRs) during OGTTs demonstrated four insu-
lin secretion groups: early, intermediate, late and very late (Fig. 2d). 
Each cluster was heterogeneous in terms of OGTT status, disposition 
index, insulin resistance status and maximum insulin level and dem-
onstrated no consistent pattern of molecular enrichment, indicating 
high heterogeneity in glucose dysregulation. 

We also searched for multi-omics molecular associations 
with the disposition index across the cohort and found 109 sig-
nificant molecules (FDR < 0.1) (Supplementary Table 4). HbA1C 
(FDR = 2.0 × 10−3) and FPG (FDR = 4.9 × 10−2) were negatively 
associated with disposition index as expected from previous reports 
showing increased FPG and HbA1C with beta-cell dysfunction17,18. 
We found that disposition index was strongly negatively associated 
with leptin (FDR = 1.6 × 10−7) and GM-CSF (FDR = 7.2 × 10−7), 
which are known regulators of energy homeostasis and inflam-
mation signaling19,20. GM-CSF (FDR = 1.5 × 10−7) and leptin 
(FDR = 3.3 × 10−7) were also the two analytes that were most 
strongly positively associated with body mass index in our cohort 
and were positively associated with hsCRP illustrating their connec-
tion to inflammation and obesity. In the disposition index correla-
tion network, leptin and GM-CSF were correlated with various lipid 
classes including an inverse correlation with androgenic steroids, 
and a positive correlation with sphingolipids and sphingosines, free 
fatty acids and glycerophospholipids highlighting their importance 
in lipid metabolism21 (Fig. 2e and Supplementary Table 5). 

Longitudinal course and mechanistic insights. A study strength is its 
dense longitudinal sampling approximately every 3 months. On the 
basis of individual longitudinal HbA1C trajectories, participants 
were classified into six categories (Extended Data Fig. 2c). Notably, 
it was common for participants’ HbA1C to alternate between the 
normal–pre-DM (n = 21) and pre-DM–DM ranges (n = 8). No one 
stayed exclusively in the DM range due to good diabetes control 
with lifestyle and medications. Consistent transitions from normal 
to pre-DM (n = 5) and from pre-DM to normal HbA1C (n = 10) 
were overall less common. 

Close evaluation of individual trajectories of participants with 
new diabetes (n = 9) revealed additional insights. Individual trajec-
tory analysis revealed that participants followed multiple pathways 
to diabetes (Fig. 3a–c, Extended Data Fig. 3 and Supplementary 
Table 3). Some participants’ (n = 2) first abnormality was DM-range 
OGTT (Fig. 3a and Extended Data Fig. 3a), others (n = 3) had ele-
vated FPG (Fig. 3b and Extended Data Fig. 3b,c) and the remainder 
(n = 4) had a DM-range HbA1C (Extended Data Fig. 3d,e) or abnor-
malities in multiple measures (Fig. 3c and Extended Data Fig. 3f). 
Diabetic-range laboratory results followed viral infections3 in one 
participant (Fig. 3c). Also, one participant with a single DM labora-
tory result improved their SSPG with diet and exercise (Extended 
Data Fig. 3g) and never had a second DM-range laboratory result 
during the study. 

Progression to DM was associated with weight gain and 
decreased gut microbiome diversity (Shannon) in two out of eight 
participants (Fig. 3a,b and Extended Data Fig. 4a,b). In both cases, 
the phylum Bacteroidetes proportion was increased at the time 
point of lowest diversity to the detriment of beneficial bacteria such 
as the genus faecalibacterium (Extended Data Fig. 4c–e). Using lin-
ear mixed models to account for repeated measures, we evaluated 
the relationships between microbiome diversity and SSPG, FPG 
and HbA1C and found an inverse relationship with diversity that 
was strongest with SSPG (P = 1.5 × 10−4) (Supplementary Table 6). 
We then performed longitudinal mixed model analysis to under-
stand changes in diversity over time (Supplementary Table 7). 
SSPG accounted for 28% of the between-person Shannon variance 
highlighting the importance of insulin resistance in microbiome 
diversity. The majority of Shannon variance was intra-individual 
(76.8%) and adding the Bacteroidetes phylum proportion to the 
model including its interaction with time accounted for 41% of the 
remaining within-person variance, consistent with the relationship 
observed in the individual profiles between Bacteroidetes propor-
tion and diversity. 

Longitudinal evaluation of all data related to glucose and insu-
lin regulation provided insights into mechanism. For instance, 
the person in Fig. 3c had a normal SSPG despite a diabetic-range 
OGTT, FPG and HbA1c. Although elevated OGTT is commonly 
thought to result from increased peripheral resistance or decreased 
insulin production, this participant had elevated insulin produc-
tion with a delayed response trajectory, possibly reflecting delayed 
insulin release (Supplementary Table 3). Other mechanistic insights 
are provided in Supplementary Table 3. In conclusion, participants 
developed diabetes through different pathways, and our detailed 
characterization provides potential hypotheses regarding individual 
underlying mechanisms of glucose dysregulation, which is a goal of 
precision medicine. 

Multi-omic dimensions of glucose metabolism and inflammation. 
We examined the underlying relationships between glucose (FPG, 
HbA1C) and inflammation (hsCRP) levels and multi-omics mea-
surements at healthy time points (healthy-baseline models) and 
with relative changes for all time points (dynamic models) using 
linear mixed models. The two analyses are complementary since 
the healthy-baseline models highlight the stable relationships 
between measures and dynamic models highlight common asso-
ciations with change. 

As expected, the healthy-baseline analysis demonstrated that 
HbA1C and FPG strongly associated with each other and the 
‘glucose homeostasis’ pathway (Fig. 3d, Extended Data Fig. 5 and 
Supplementary Tables 8–13). Although the two measures had many 
common associations, particularly with metabolites including lip-
ids (free fatty acids and total triglyceride level (TGL)) and amino 
acids as previously reported22, many analytes were exclusively asso-
ciated with FPG or HbA1C, highlighting the differential underlying 
biology captured by both measures. While HbA1C associated with 
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was determined by the hypergeometric test (one-sided) followed by Fisher’s combined probability test (one-sided) to determine combined pathway 
significance (Benjamini–Hochberg FDR < 0.05). The n’s of proteins and metabolites for each pathway are provided in Supplementary Tables 15, 17 and 19. 
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unsaturated fatty acid (FDR = 8.2 × 10−4) and glycerophospholipid 
metabolism (FDR = 2.88 × 10−3), FPG associated with amino acid 
(FDR = 7.4 × 10−4) and bile acid metabolism (FDR = 4.6 × 10−3). 

The dynamic model analysis revealed more commonalities 
between changes in glucose measures and inflammation (Fig. 3d,e, 
Extended Data Fig. 5 and Supplementary Tables 14–19). As 
expected, hsCRP positively associated with inflammatory proteins 
including MIG (FDR = 1.4×10−4) and IP10 (FDR = 3.9 × 10−22) 
as well as immune pathways including ‘complement activation’ 
(FDR = 8.7 × 10−16), ‘innate immune system’ (FDR = 8.3 × 10−14) 
and ‘oxidative damage’ (FDR = 3.0 × 10−6). Both HbA1C and hsCRP 
positively associated with total white blood cells, monocytes and 
neutrophils consistent with previous findings23. In addition, hepa-
tocyte growth factor (HGF) associated with HbA1C and hsCRP, 
consistent with its role in glucose metabolism and modulation of 
inflammatory response24. We also observed that FPG and HbA1C 
both associated with ‘leukotriene biosynthesis’ that contributes to 
inflammation and leads to insulin resistance25. HbA1C also associ-
ated with additional pathways related to lipid metabolism includ-
ing ‘plasma lipoprotein assembly’ and ‘chylomicron assembly’, thus 
further demonstrating the connections among inflammation, lipid 
metabolism and metabolic regulation of glucose. 

Multi-omics prediction of SSPG and OGTT. The modified insulin 
suppression test is a clinically important direct measure of peripheral 
insulin resistance but is expensive and labor-intensive, and requires 
6 h. The 2-h OGTT is a sensitive test for diabetes and is less expensive, 
but still inconvenient. Thus, we evaluated how well multi-omics mea-
surements could predict the results of these tests. Using a Bayesian 
network algorithm, we first identified highly predictive features fol-
lowed by ridge regression modeling using these features26,27. The SSPG 
prediction model using all omes achieved a cross-validated R2 of 0.87 
(final model MSE = 0.16) compared to an R2 of 0.59 (MSE =0.55) 
using only clinical data (Fig. 3f and Supplementary Table 20). We also 
compared predictive models using clinical data plus each single ome 
and found that the transcriptome (R2 =0.88, MSE =0.15), metabo-
lome (R2 =0.80, MSE =0.31) and microbiome models (R2 =0.78, 
MSE =0.26) had the best predictive accuracy for SSPG. Similarly, 
the multi-omic prediction model for OGTT (R2 =0.71, MSE =0.24) 
was superior to the clinical data only model (R2 =0.42, MSE =0.71) 
(Fig. 3f and Supplementary Table 21). The transcriptome had the best 
predictive accuracy of the single ome models (R2 = 0.62, MSE =0.30). 
Molecules that were found to be consistent across multiple SSPG 
models included the TGL/HDL (high-density lipoprotein) ratio, 
the protein IL-1RAP; the lipid hexosylceramide (HCER)(24:0), the 
MAP3K19 transcript and a Ruminococcaceae family microbe. The 
relationship between insulin resistance and TGL/HDL ratio has 
already been described28 and other measures are emerging29–31. There 
was little overlap between SSPG and OGTT predictors, thus support-
ing the idea that these measures reflect different underlying biology. 
The increased predictive performance with multi-omics measure-
ments compared to clinical laboratory results alone illustrates the 
benefit of multi-omics data. 

Other metabolic disorders. Other clinical abnormalities were 
observed in sodium, potassium and liver enzymes (ALT) as well as 
microalbuminuria and macroalbuminuria (Supplementary Table 2). 
People with pre-DM and DM are at higher risk for liver steatosis and 
albuminuria. Using the American Gastroenterological Association 
(AGA) Guidelines32 for health normal references (males: 25–33 
IU l–1; females: 19–25 IU l–1) revealed that the majority of partici-
pants (83%) had at least one elevated healthy visit ALT and 41% had 
elevations at all healthy time points. Given the AGA recommenda-
tions for ultrasound screening32, our findings suggest that screening 
for nonalcoholic fatty liver disease is indicated in the majority of 
our population. 

One participant had substantially more outlier RNA molecules 
(ninety-fifth percentile) than the rest of the cohort. These outli-
ers were related to toxicity pathways including oxidative stress 
and hepatic abnormality pathways (Extended Data Fig. 6a and 
ref. 10). The participant had mild elevation in ALT accompanied 
by increases in bile acids and glutamyl dipeptides (Extended Data 
Fig. 6b), and was later diagnosed with mild hepatic steatosis. 
However, many participants had mild ALT elevations and at least 
five had hepatic steatosis; thus, these clinical findings are not suf-
ficient to explain the RNA-seq outlier status. Although multiple 
omics and other measures point to aberrant hepatic function, clini-
cal manifestations were unclear and this individual will be tracked 
for hepatic abnormalities. 

Cardiovascular health profiling. Atherosclerotic cardiovascular 
disease (ASCVD) is a major cause of mortality and morbidity asso-
ciated with insulin resistance and DM33. We assessed the American 
Heart Association ASCVD risk score, estimating 10-year risk of 
heart disease or stroke on all participants34 at study entry. We also 
followed longitudinal trajectories of dyslipidemia and systemic 
hypertension. Enhanced cardiovascular profiling was performed on 
43 participants and included (1) vascular ultrasound and echocar-
diography to assess for subclinical atherosclerosis, arterial stiffness 
or early stage adverse ventricular remodeling or dysfunction and 
(2) emerging biomarkers assessment to interrogate oxidative stress, 
inflammation, immune regulation, myocardial injury and myocar-
dial stress pathways35–37. 

Cardiovascular risk profiles. At study entry, 24 patients (22.6%) had 
an ASCVD risk score ≥7.5%, a threshold often used to guide pri-
mary prevention34 (Fig. 4a). Total cholesterol and blood pressure 
measurements indicate that self-report underestimated the preva-
lence of dyslipidemia (Fig. 4b) and 18 participants learned they had 
stage II hypertension during the study. 

Clinical discoveries through enhanced clinical phenotyping. Wearable 
and cardiovascular imaging led to important clinical discoveries. 
Wearable heart rate monitoring identified two participants with 
nocturnal supraventricular tachycardia, leading to the diagnosis 
of obstructive sleep apnea in one and atrial fibrillation secondary 
to sleep apnea in the other. In the subgroup of participants who 
had enhanced cardiovascular imaging studies, we discovered two 
major health findings: one cardiac finding associated with a patho-
genic mutation in the RPM20 gene, and one non-cardiac finding 
(Supplementary Table 2). Fitness assessment using percentage pre-
dicted oxygen consumption (maximal oxygen consumption relative 
to a healthy person of the same age and weight) identified three par-
ticipants with values below 70% suggestive of a reduction in exer-
cise capacity that has been associated with poorer health outcomes38 
(Extended Data Fig. 7a). Subclinical atherosclerosis was found in 
six participants leading to a recommendation to increase statin dose 
(Extended Data Fig. 7b). Overall, there were 15 important clinical 
findings through these enhanced tests (Supplementary Table 2). 

Cardiovascular events, pharmacogenomic and transcriptomic find-
ings. Five participants had cardiovascular events during the course 
of the study including stroke (n = 3), unstable angina (n = 1) and 
stress-induced cardiomyopathy (n = 1). All had elevated hsCRP 
levels before their event. Two participants with incident strokes 
had pharmacogenomic variants that could partially explain subop-
timal response to the chosen therapy. One participant on aspirin 
for stroke prevention had a catechol-O-methyltransferase Val/Val 
genotype (rs4680), which has a 85% increased risk of cardiovascular 
events in female aspirin users compared to placebo controls39. The 
other participant with incident stroke was an intermediate clopido-
grel metabolizer phenotype (CYP2C19*2 (rs4244285)/CYP2C19*17 
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Fig. 4 | Clinical longitudinal cardiovascular health profiling and multi-omics correlation network of adjusted ASCVD risk. a, Distribution of ASCVD risk scores 
and adjusted ASCVD risk scores (n= 108). The box plot shows the first (lower edge of box), median (middle line) and third (upper edge of box) quartiles. The 
upper whisker is the third quartile + 1.5× (interquartile range) and the lower whisker is the lowest data point. b, Self-reported cholesterol status versus measured 
total cholesterol profiles at study entry and over the course of the study (n= 108). c, Multi-omics correlation network of molecules associated with adjusted 
ASCVD risk score (n= 77 participants) using Spearman correlation and multiple testing correction of q value < 0.2. Correlations between molecules were then 
calculated using Spearman correlation and considered significant if Bonferroni-corrected P< 0.1. Only molecules belonging to the main network were plotted. 

(rs12248650)) and had a second stroke while on clopidogrel. pharmacogenomic variants related to the common cardiovascular 
Intermediate metabolizers of clopidogrel were common in our study medications of statins and coumadin were found in 26 and 30 par-
(31/88 (35%)) and 4/88 (4.5%) were poor metabolizers. Additional ticipants, respectively (Supplementary Table 22). 
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We also analyzed 14 of 32 genes associated with stroke and 
stroke types40 that were robustly detected in our RNA-seq dataset. 
Outlier analysis revealed that two of the five participants with car-
diovascular events had the highest composite Z scores at clinically 
relevant time points including post-stent placement (Z score = 33.2, 
FDR = 6.9 × 10−6), mid-infection (Z = 40.4, FDR = 3.2 × 10−9) for 
one participant and transition to diabetes (Z = 30.1 and 24.1) for 
the other (Extended Data Fig. 7d,e). Thus, expression levels of 
genes related to stroke were outliers and associated with significant 
health issues. 

Multi-omics analysis of ASCVD risk. We calculated pair-wise asso-
ciations by using Spearman correlation between multi-omics mea-
sures and adjusted ASCVD risk score and constructed a correlation 
network (Fig. 4c and Supplementary Tables 23 and 24). This analy-
sis revealed relationships between clinical and omics measures such 
as monocytes bridging cytokines and complement proteins, and 
triglyceride and cholesterol measures linking to apolipoproteins. 
Among immune proteins, the interferon-gamma pathway (MIG, 
IP10), interleukin (IL)-2, vascular endothelial growth factor alpha 
and HGF) were strongly associated with the ASCVD risk score. The 
interferon-gamma pathway has been recently found to play a key 
role in atherosclerosis on the basis of population-based studies41–45. 
IL-2 has been shown to be associated with atherosclerosis through 
its role in T-cell mediated inflammation45. HGF is involved in the 
survival of endothelial cells and is emerging as a risk factor of out-
come42,43. Our network also highlighted several molecules that are 
emerging in cardiovascular disease research including complement 
and free fatty acids as well as γ-glutamyl-ε-lysine (reported in dia-
betic nephropathy), hypoxanthine, methylxanthine (associated with 
coffee consumption) and bile acids46–48. 

In participants who underwent cardiovascular imaging, we also 
performed a correlation network analysis that shows how ASCVD 
risk, enhanced imaging and selected circulating protein mark-
ers associate together (Extended Data Fig. 7c and Supplementary 
Table 0). ASCVD score was closely related to HGF, which itself 
was closely related to inflammatory cytokines IL-1B and IL-18, 
part of the inflammasome complex. Exercise capacity as assessed 
with peak VO2 was closely associated with GDF-15, a transform-
ing growth factor that is associated with cardiovascular mortality 
risk49 and leptin, a hormone that regulates appetite50. These findings 
demonstrate an interaction between inflammation and ASCVD risk 
and suggest new opportunities for personalized risk stratification, 
beyond those currently available. 

Oncological, hematological and immune profiling. Exome 
sequencing also led to several important oncological, hematological 
and immune-related clinical discoveries. Eight participants learned 
they had clinically actionable genetic variants associated with 
increased oncologic risk, such as APC, SDHB, BRCA1, MUTYH, 
CHEK2, and hematologic risk (PROS1) (Supplementary Table 2). In 
one case, follow-up screening led to discovery of an early stage pap-
illary thyroid cancer, and the participant was able to elect thyroid 
preserving surgery due to early detection. 

B-cell lymphoma discovery and longitudinal outlier analysis. 
Abdominal ultrasound imaging revealed splenomegaly and large 
para-aortic lymph nodes in one participant (Fig. 5a); immedi-
ate clinical work-up (Fig. 5b,c and Supplementary Table 2) led to 
diagnosis of B-cell lymphoma. Longitudinal omics outlier analysis 
revealed a striking increase (greater than five-fold) in the cytokine 
MIG that started over a year before diagnosis and returned to base-
line after treatment (Fig. 5d). Its early elevation suggests possible use 
as an early biomarker, consistent with other studies51–53. Although 
it is probably important in a number of cancers54, our data dem-
onstrate MIG’s use as a longitudinal marker of disease. A notable 

decrease in histidine-rich glycoprotein was also evident at diagnosis 
(Supplementary Table 25), consistent with its previously reported 
role in inhibiting tumor growth and metastasis55,56. 

The functional association network using proteins that were in 
the ninety-fifth percentile at the time of diagnosis relative to all 
the healthy visits in the study illustrates the central role of MIG in 
orchestrating other cytokines, namely ENA78, IL17A and VCAM1 
(Fig. 5e). Pathways involved in inflammation/immune response as 
well as cell proliferation and migration were enriched at time of 
diagnosis (Supplementary Table 26). The participant’s gut micro-
biome Shannon diversity also changed with time (P = 0.0041), 
primarily declining in the 2 years before diagnosis, with a nadir at 
diagnosis (Fig. 5f) and increasing with treatment. Outlier microbes 
(ninety-fifth percentile) at time of diagnosis included low propor-
tions of the genera Clostridium IV, Lachnospiraceae incertae sedis, 
unclassified Clostridiales and Ruminococcaceae and elevated pro-
portions of the class Gammaproteobacteria (Supplementary Table 
25). Similar to our findings in participants with low diversity 
before DM diagnosis, at the point of lowest diversity, the phylum 
Bacteroides predominated (84%). Altogether, we demonstrate that 
longitudinal molecular outlier analysis can identify deviations in 
key molecules associated with disease to reveal potential biomark-
ers and give insights into underlying biological mechanisms associ-
ated with the disease. 

Hematologic, immune and infection profiling. Comprehensive clini-
cal laboratory results identified many important health-related 
findings. Thirty participants had hemoglobin or hematocrit in the 
anemic range, including 28 participants without previously known 
anemia (hemoglobin: males <135 mg ml−1, females <117 mg ml–1). 
In participants with anemia, mean corpuscular volume was low 
(<82 femtoliters) in 26.7% (n = 8) suggesting microcytic anemia, 
10% (n = 3) had an elevated mean corpuscular volume (>98 fem-
toliters) with normal mean corpuscular hemoglobin concentration 
and the remainder had normocytic anemia. One of these partici-
pants was discovered to have the alpha thalassemia trait after refer-
ral to their physician for anemia evaluation. 

Immunological profiling with IgM identified one participant 
with a significantly elevated IgM (Fig. 5g), which led to a clinical 
diagnosis of MGUS. Nine participants were noted to have persis-
tently low IgM (two or more IgM < 0.3 mg ml−1). Four participants 
had subsequent clinical evaluation of IgA and IgG that led to identi-
fication of IgG monoclonal gammopathy and subsequent diagnosis 
of smoldering myeloma in one participant. The discovery of MGUS 
and smoldering myeloma precancers has important implications in 
elevated risk and screening for cancer57,58. 

During the study, wearable monitoring detected temperature 
and heart rate abnormalities related to inflammatory disturbances 
as measured by hsCRP (n = 4). In one of the participants, these find-
ings resulted in diagnosis of Lyme disease2. Thus, important health 
information related to hematologic, immune and infection systems 
were revealed by a variety of different approaches. 

Effect of iPOP participation on participants. The deep pheno-
typing profiling had an effect on the majority of the participants 
by (1) encouraging appropriate risk-based screening including 
genetic counseling, (2) facilitating clinically meaningful diagnosis, 
(3) potentially informing therapeutic choices (mechanistic or phar-
macogenomic information) and (4) increasing awareness leading to 
diet and physical activity modifications. Overall, we found over 67 
major clinically actionable health discoveries spanning various area 
including metabolic, cardiovascular, heme/oncological and infec-
tious using standard clinical, enhanced and emerging technologies 
(Fig. 6a and Supplementary Table 2). 

Fifty-eight participants were surveyed mid-to-late-study about 
the effect of participating in the study including changes on food 
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(one-sided) was used to compare the model including time to the null model. g, IgM (immunoglobulin M) level distribution in the cohort (n= 109, 
samples 1,111). Benjamini–Hochberg P value (two-sided) was calculated on IgM Z scores assuming a normal distribution across all visits in the cohort. 
Outlier visits are from a participant that was diagnosed with monoclonal gammopathy of undetermined significance (MGUS). The box plot shows 
the first (lower edge of box), median (middle line) and third (upper edge of box) quartiles. The upper whisker is the third quartile + 1.5× (interquartile 
range) and the lower whisker is the lowest data point. The diamond is the mean. 
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a Major clinically actionable health discoveries 

Metabolic n 

MODY mutation (gene) 1 
ABCC8 mutation (gene) 1 
New DM labs (clinical) 14 
New pre-DM labs (clinical) 55 

Infectious n 

Lyme disease (wearable) 1 

Others n 

Obstructive sleep apnea (wearable) 1 
SLC7A9 mutation (cystinuria risk) (gene) 1 
Macroalbuminuria (clinical) 2 

Cardiovascular n 

Genetic cardiomyopathy (gene/imaging) 1 
Arythmia (afib, SVT) (wearable) 2 
Actionable pharmacogenomics (gene) 3 
Early stage CV profile (imaging) 9 
Stage II hypertension (vitals) 18 

Heme/Oncological n 

Lymphoma (imaging) 1 
MGUS (clinical) 1 
Smoldering myeloma (clinical) 1 
Oncologic risk gene (1× thyroid cancer) 7 
˜ Thalassemia (clinical) 1 
˛ Thalassemia (gene/clinical) 1 
PROS1 mutation (gene) 1 

b cHealth behavior changes Amount of change in diet and exercise 

9% 
3% 

69% 

19% 

46% 

Diet 

22% 
28% 

1 

Exercise 

12% 
15% 

2 

38% 

16% 

26% 
26% 

3 4 

12% 

5 

5% 

Diet Exercise Both Neither Other No Moderate Significant 
Only Only Changes change change change 

Fig. 6 | Summary of major clinically actionable health discoveries and participant health behavior change. a, Summary of clinically relevant health 
discoveries: 67 discoveries were considered major and the 55 pre-DM results were not included in this count. b, Diet and physical activity modifications. 
c, Amount of change made in diet and exercise (five-point scale was used with 1 being no change and 5 being a significant change). afib, atrial fibrillation; 
SVT, supraventricular tachycardia; CV, cardiovascular; MODY, maturity onset diabetes of the young; MGUS, monoclonal gammopathy of undetermined 
significance. 

and exercise habits, health findings and their sharing of results 
with their personal doctors, family and others. Eighty-one percent 
reported some change in diet and/or exercise habits (Fig. 6b). In 
addition, almost half reported changing other health behaviors as a 
result of the study, including improving sleep, reducing stress, add-
ing fiber and supplements to their diet, more careful self-examina-
tions, recording food intake, attending a fitness camp and general 
lifestyle changes (Supplementary Table 27). Figure 6c shows the 
amount of change in diet and exercise. Participants also reported 
that their wearable device kept them accountable for exercising and 
more mindful to take walking breaks. Others reported using wear-
ables to monitor sleep. 

The majority of participants had discussed study results with 
their family (71%) and physicians (68%). Physician discussions led 
to follow-up testing in 29% of the cases. Additional testing included 
having children tested for gene mutation, colonoscopy, additional 
eye exams, cardiac calcium scan, positron emission tomography 
scan to evaluate lymphoma, repeating study tests (echocardiogram, 
pulmonary function tests) in the clinical setting, extra screening for 
macular degeneration risk and additional tests for diabetes-related 
studies (SSPG and the Quantitative Sudomotor Axon Reflex Test). 
Participants were also asked about the effect of SSPG testing and 
CGM monitoring (Supplementary Table 28). Eight participants 
who used a CGM monitor reported that it helped them make differ-
ent dietary and meal frequency choices to reduce their blood sugar 
spikes. SSPG results motivated at least two participants to change 
their activity and diet and were reassuring to others. Therefore, 

overall, a myriad of positive behavior modifications and follow-up 
tests resulted from study participation. 

Discussion 
Our study found that combining untargeted multi-omics and physi-
ological longitudinal profiling with targeted profiling of metabolic 
and cardiovascular risk led to actionable health discoveries and 
meaningful physiological insights building on our previous work3. 
Our targeted profiling approach enabled us to connect longitudinal 
profiling of glucose metabolism with multi-omics profiling facilitat-
ing the precision medicine goal of defining diseases on the basis of 
molecular mechanisms and pathophysiology1. The untargeted lon-
gitudinal big data approach led to a number of discoveries in other 
areas such as cardiology, oncology, hematology and infectious dis-
ease, indicating that broad profiling is valuable for disease detection 
in many different areas. We capitalized on the depth of longitudinal 
profiling to identify deregulated molecules and pathways associated 
with the transition from health to disease. 

The study informed more than half the participants of their 
pre-DM and DM status, dyslipidemia and hypertension, which led 
many to institute diet and physical activity lifestyle changes. Our 
enhanced clinical assays including OGTT, beta-cell function assess-
ment, insulin resistance and CGM in combination with standard 
clinical tests (FPG and HbA1C) improved characterization of pre-
DM and DM status. The in-depth physiological profiling identified 
individual mechanisms of glucose dysregulation that has important 
implications for implementation of personalized treatments. Our 
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findings are consistent with a recent study that found that treat-
ments based on the current classification are not well tailored to 
mechanistic subtypes59 and proposed five subtypes of adult onset 
DM. Deeper molecular understanding of progression to DM and 
its characteristics in the individual may help tailor therapy to its 
underlying pathophysiology and will probably identify additional 
subtypes and also inform stratification of CVD risk60. The superi-
ority of using multi-omics data for SSPG prediction compared to 
standard measures illustrates the value of multi-omics data to help 
provide a molecular taxonomy of disease1, as well as replace expen-
sive burdensome tests for insulin resistance with a simple blood test. 
Microbiome measures were also a good predictor of SSPG when 
combined with clinical measures and SSPG inversely correlated 
with Shannon diversity further demonstrating the intricate relation-
ship between gut microbes and insulin resistance consistent with 
our multi-omics study of weight gain61. 

Although the majority of our exome sequencing findings were 
in the oncologic realm, several important metabolic exome find-
ings were found including a MODY mutation with implications for 
medication management, a RBM20 mutation related to dilated car-
diomyopathy and numerous pharmacogenomic variants that have 
important health implications62. Furthermore, two participants 
experienced vascular events, unaware of relevant pharmacogenom-
ics information that could have suggested alternative treatments. 
Thus, we expect complex genetic risk assessment such as the infor-
mation learned in this study to be incorporated into risk manage-
ment and tailored treatment of disease63. 

Imaging plays a central role in precision health initiatives, 
enabling the early detection of oncological and systemic disease64. 
In our study, imaging helped detect dilated cardiomyopathy (in 
the patient with RBM20 mutation), early stage atherosclerotic dis-
ease and a case of asymptomatic lymphoma. Wearable sensors are 
emerging as a transformative technology for precision health and 
medicine and heart rate monitoring led to the diagnosis of atrial 
fibrillation, sleep apnea and detection of Lyme disease in partici-
pants. Large population-based initiatives such as ‘myHeart counts’ 
are evaluating the potential of wearable heart sensors to detect 
subclinical atrial fibrillation7 and electrocardiographic monitor-
ing is now available in consumer wearable devices65. Our findings 
also suggest a role for CGM in diabetes prevention by identifying 
unrecognized glucose dysregulation6, and enabling the individual to 
optimize their diet on the basis of personalized glycemic responses. 

Our multi-omics analysis also provided important insights into 
ASCVD risk, highlighting the importance of systemic inflamma-
tion. Although our study was not powered for outcome analysis, 
all five participants with incident cardiovascular events had sub-
clinical inflammation. Furthermore, correlation network analy-
sis highlighted the role of monocytes, HGF, IL-2, MCP-3 and 
interferon-gamma cytokines including MIG and IP10 and other 
molecules in cardiovascular health. These analytes are involved in 
inflammation and are emerging in the context of ASCVD41–43,45,66. 

Untargeted longitudinal outlier analysis of the period leading up 
to the diagnosis of lymphoma illustrates the importance of longitu-
dinal multi-omics analysis for biomarker and pathway discoveries. 
We identified potential critical biomarkers (for example, MIG) and 
changes in the microbiome up to 1 year before diagnosis demon-
strating the power of monitoring molecules longitudinally to detect 
deviations from the healthy baseline. Outlier biomarkers at time of 
diagnosis illustrated deregulated pathways related to inflammation, 
cell proliferation and cell migration that shed light on underlying 
dysregulated biological mechanisms associated with the disease. 
Further work will be needed to streamline the investigation of 
untargeted discoveries in precision medicine research. Given the 
need for early biomarkers for cancer detection, longitudinal multi-
omics analyses represent an important tool for meeting this need. In 
addition to individual molecule monitoring, omics profiles provide 

the opportunity to detect outliers relative to a matched-healthy 
population. Clinical outlier analysis identified one participant with 
MGUS where early diagnosis with follow-up can increase survival 
time in individuals who progress to an associated malignancy57. 
While some omics outlier profiles could be clearly connected to 
an underlying health condition, the case of the participant with 
significant RNA-seq outliers illustrates the challenges of interpret-
ing the clinical relevance of outlier analysis results with emerging 
measures. While precision medicine approaches have the potential 
for unnecessary anxiety and overtesting, we did not observe this in 
our population. 

In the rapidly evolving field of precision medicine, this study 
should be assessed in the context of methodological considerations. 
Our cohort comprised highly educated volunteers, and therefore 
probably had a self-selection bias. Although this may affect the gen-
eralizability of our findings for behavioral changes, it is less likely 
to affect the underlying biological associations of multi-omics with 
glucose measures. A study strength is its ethnic diversity, which 
is greater than that in other longitudinal multi-omics studies4,5. 
In sum, we demonstrate the feasibility of a longitudinal precision 
health and medicine approach that builds on sound molecular and 
physiological phenotyping. We show that in-depth physiological 
and multi-omics characterizations are likely to further refine risk 
stratification. The intensive longitudinal study design demonstrates 
how a small longitudinal cohort can yield important health and dis-
covery findings. In the future, it will be possible to design person-
alized testing programs on the basis of individual disease risk and 
longitudinal marker trajectories as well as evaluate the cost-value of 
these approaches for individuals and health care systems. 

Online content 
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/ 
s41591-019-0414-6. 
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Methods 
Participant consent and accrual. Participants were recruited from the Stanford 
University surrounding community with the goal of enriching the cohort with 
individuals at risk for type 2 diabetes and thus included individuals who expressed 
interest in other studies related to diabetes. Participants were enrolled as part 
of Stanford’s iPOP research study (IRB 23602), which entails longitudinal multi-
omics profling of a cohort of adult volunteers enriched for prediabetes. Tere 
was no payment required to participate in the study and participants were not 
paid for their time. Tis study is part of the NIH integrated Human Microbiome 
Project (iHMP). 

Design, setting and participants. The iPOP study is a longitudinal prospective 
cohort study69 containing 109 individuals (Extended Data Fig. 1a). Inclusion 
criteria were ages 25–75, body mass index (BMI) between 25 and 40 kg m−2 

and 2-h OGTT in the normal or prediabetic range (<2.0 mg ml−1). Exclusions 
included active eating disorder, hypertriglyceridemia >4.0 mg ml−1, uncontrolled 
hypertension, heavy alcohol use, pregnancy/lactation, previous bariatric surgery 
and active psychiatric disease. After meeting initial recruitment goals, we expanded 
our inclusion criteria to include people with diabetes and people with normal 
BMI into the study. Participant demographics are summarized in Supplementary 
Table 1 with detailed data provided in Supplementary Data Tables 1–3. Of note, 
our cohort is slightly different from that in the main iHMP paper10. We excluded 
one participant who had no clinical history or follow-up information available and 
included four participants with clinical discoveries who entered the study after 
2016 and thus had no omics data available. 

The cohort was recruited over a number of years, with the first participant 
starting in 2010. The study design has been described in detail previously69. Briefly, 
participants were asked to donate samples (that is, fasted blood and stool) quarterly 
when healthy and more frequently when sick (viral infection), after immunization 
and various other events such as after taking antibiotics and going through 
colonoscopy. Samples collected throughout December 2016 were used for multi-
omics analysis and corresponds to a median participation duration of 2.8 years. 
Standard and enhanced clinical laboratory data and participant surveys were 
available throughout June 2018. Most analyses were performed using only healthy 
time points. The text indicates whether all time points were used. 

Measurements. All blood samples were collected after an overnight fast and were 
used to perform standard and enhanced clinical tests as well as emerging assays 
(Fig. 1). Standard tests included: FPG, HbA1C, fasted insulin, basic lipid panel, 
complete metabolic panel, CBC with differential and others (Supplementary Table 
0). In addition, participants were asked to complete various surveys in relation to 
demographics and current and past medical history, medications, smoking history 
and family history, anthropometry, diet and physical activity as well as stress. 
Enhanced tests included: OGTT, SSPG, beta-cell function assessment, hsCRP, IgM, 
cardiovascular imaging (echocardiography, vascular ultrasound), cardiopulmonary 
exercise, CVD markers and wearable devices (physiology and activity monitor, 
CGM). In addition, multi-level molecular profiling was performed (emerging 
tests) including genome, gene expression (transcriptome), immune proteins 
(immunome), proteins (proteome), small molecules (metabolome) and gut 
microbes (microbiome). Clinical laboratory measures, immune proteins and 
cardiovascular biomarkers are detailed in Supplementary Table 0. Participant 
surveys included the International Physical Activity Questionnaire, Stress and 
Adversity Inventory and Perceived Stress Scale-10 (refs. 70–72). 

Modified insulin suppression test. Sixty-nine participants underwent the 
modified insulin suppression test73 to determine SSPG levels. The test was 
performed after an overnight fast and consists of 180-min infusion of octreotide 
(0.27 μgm−2 min−1), insulin (0.25 μgm−2 min−1) and glucose (240 μgm−2 min−1) with 
blood draws at minutes 150, 160, 170 and 180. The oximetric method was used 
to determine blood glucose and SSPG was determined by taking the mean of the 
four measurements. Reasons for not participating in this test included medical 
contraindications (n = 9), refusal (n = 5), dropping out of the study (n = 11) and not 
yet performed (n = 15). 

Multi-omics measures. Detailed methods regarding sample preparation, data 
acquisition and data preprocessing are available in the main NIH integrated 
Human Microbiome Project study by Zhou et al.10. We briefly summarize these 
methods here. 

Genomics. Whole exome sequencing (n = 88) was performed by an accredited 
facility and variant calling was performed using an in-house pipeline (HugeSeq)74. 
Exomes were assessed for pathogenic variants according to the American College 
of Medical Genetics Guidelines12,75. The Online Mendelian Inheritance in Man 
database was used. Further details on processing and variant calling are provided 
in Rego et al.12. 

PBMC RNA sequencing. RNA sequencing from bulk PBMCs was performed using 
the TruSeq Stranded total RNA LT/HT Sample Prep Kit (Illumina) and sequenced 
on Illumina HiSeq 2000 instrument. The TopHat package76 (v.2.0.11) in R (v.3.4) 

was used to align the reads to personal genomes, followed by HTseq (v.0.6.1) and 
DESEQ2 (v.3.5)77 for transcript assembly and RNA expression quantification. 

Plasma sequential window acquisition of all theoretical (SWATH)-mass spectroscopy 
proteomics. A NanoLC 425 System (SCIEX) was used to separate tryptic peptides 
of plasma samples. Mass spectroscopy analyses were performed with randomized 
samples using SWATH Acquisition on a TripleTOF 6600 System equipped with 
a DuoSpray Source and 25 μm I.D. electrode (SCIEX). A final data matrix was 
produced with 1% FDR at peptide level and 10% FDR at protein level. Protein 
abundances were computed as the sum of the three most abundant peptides 
(top3 method). To address batch effects, subtraction of the principal components 
showing a major batch bias was performed using Perseus (v.1.4.2.40). 

Immune protein measurements. The 62 plex-Luminex antibody-conjugated bead 
capture assay (Affymetrix) was used to characterize blood levels of immune 
proteins. The assay was performed by the Stanford Human Immune Monitoring 
Center. The protocol is available in ref. 78. 

Plasma liquid chromatography–mass spectrometry (LC–MS) metabolomics. 
Untargeted plasma metabolomics was performed using a broad-spectrum 
LC–MS platform79. This analytical platform has been optimized to maximize 
metabolome coverage and involves complementary reverse-phase liquid 
chromatography (RPLC) and hydrophilic interaction liquid chromatography 
(HILIC) separations. Data were acquired on a Q Exactive plus mass spectrometer 
(Thermo Scientific) for HILIC, and a Thermo Q Exactive mass spectrometer 
(Thermo Scientific) for RPLC. Both instruments were equipped with a HESI-
II probe and operated in full mass-spectroscopy scan mode. Tandem mass 
spectroscopy data were acquired at various collision energies on pooled samples. 
LC–MS data were processed using Progenesis QI (Nonlinear Dynamics) and 
metabolic features were annotated by matching retention time and fragmentation 
spectra to authentic standards or to public repositories. Some metabolites elute 
in multiple peaks and were indicated with a number in parenthesis following the 
metabolite name ordered by elution time. 

Plasma lipidomics. Lipids were extracted and analyzed as previously described80. 
Briefly, we used a mixture of methyl tertiary-butyl ether, methanol and water 
to extract lipids from 40 µl of plasma following biphasic separation. Lipids were 
then analyzed with the Lipidyzer platform consisting in a DMS device (SelexION 
Technology, SCIEX) and a QTRAP 5500 (SCIEX). Lipids were quantified using a 
mixture of 58 labeled internal standards provided with the platform. Lipodomics 
data is provided in Supplementary Data Table 4. 

16S Microbiome sequencing. DNA was extracted from stool in line with the 
Human Microbiome Project’s (HMP) Core Sampling Protocol A (https:// 
www.hmpdacc.org). Targeted rRNA gene amplification of the V1–V3 
hypervariable regions of the 16S rRNA gene was performed using primers 
27F and 534R (27F: 5′-AGAGTTTGATCCTGGCTCAG-3′ and 534R: 
5′-ATTACCGCGGCTGCTGG-3′), and subsequently sequenced using 2 × 300 
base-pair paired-end sequencing (Illumina MiSeq). Illumina’s software handles 
initial processing of all the raw sequencing data. A standard of one mismatch 
in primer and zero mismatch in barcode was applied to assign read pairs to the 
appropriate sample in a pool of samples. Barcodes and primers were removed 
before analysis. Amplicon sequences were clustered and operational taxonomic 
units picked by Usearch against the GreenGenes database (May 2013 version) and 
final taxonomic assignment were performed using RDP-classifier. 

ASCVD circulating markers. Millipore immunoassays human cardiovascular 
disease panels 1–4 (HCVD1MAG-67K, HCVD2MAG-67K, HCVD3MAG-67K, 
HCVD4MAG-67K) were used to characterize blood ASCVD circulating markers. 
The assays were performed by the Stanford Human Immune Monitoring Center by 
following the manufacturer’s instructions. 

Wearable physiology and activity monitoring. Participants wore a Basis watch 
during the first part of the study and a Fitbit Charge 2 during the last part of the 
study. We developed a special algorithm, ‘Change of Heart’, to detect abnormalities 
in heart rate relative to a person’s baseline that was shown to provide an early 
warning signal of clinical abnormalities and disease, which is described in detail in 
Li et al.2. 

Continuous glucose monitoring (CGM). CGM was performed with the Dexcom 
G4 CGM system. Participants wore the monitors for 2–4 weeks with interstitial 
glucose concentrations recorded every 5 min. They were also given glucose meters 
(AccCheck Nano SmartView) to measure finger prick blood glucose concentrations 
twice a day for the purpose of calibration. 

Echocardiography. Baseline rest echocardiography was performed using 
commercially available echo systems (iE33; Philips Medical Imaging). Post-
stress images were acquired immediately post-exercise, as per international 
consensus. Digitized echocardiographic studies were analyzed by the Stanford 
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Cardiovascular Institute Biomarker and Phenotypic Core Laboratory on Xcelera 
workstations in accordance with published guidelines of the American Society 
of Echocardiography81. Regarding specific echocardiographic variables, left 
ventricular ejection fraction was calculated by manual contouring of apical 
imaging82. Left ventricular global longitudinal strain (LV GLS) was calculated from 
triplane apical imaging on manual tracings of the mid-wall with the formula for 
Lagrangian strain (%) = 100 × (L1 −L0)/L0), as previously described83. With tissue 
Doppler imaging, we used peak myocardial early diastolic velocity at the lateral 
mitral annulus and the assessment of trans mitral to tissue Doppler imaging early 
diastolic velocity ratio (E/e’)84,85. 

Vascular ultrasound. Screening for subclinical atherosclerosis was performed 
using vascular ultrasound of the carotid and femoral artery using a 9.0 MHz Philips 
linear array probe and iE33 xMATRIX echocardiography System manufactured by 
Philips. Vascular stiffness was assessed using central pulse wave velocity (PWV). 

Cardiopulmonary exercise testing. Symptom-limited cardiopulmonary exercise 
ventilatory expired gas analysis was completed with an individualized RAMP 
treadmill protocol86. Participants were encouraged to exercise to maximal exercise 
capacity. In addition, we monitored the respiratory exchange ratio during exercise 
and considered an respiratory exchange ratio <1.05 as representing suboptimal 
or limitations associated with fatigue. Ventilatory efficiency, oxygen consumption 
(VO2), volume of carbon dioxide production (VCO2) and other cardiopulmonary 
exercise variables were acquired breath by breath and averaged over 10 s intervals 
using CareFusion Oxygen Pro or CosMEd Quark metabolic system. Ventilatory 
efficiency and VCO2 responses throughout exercise were used to calculate the 
ventilatory efficiency/VCO2 slope via least squares linear regression (y = mx + b, 
where m is the slope)87. Percentage predicted maximal oxygen consumption was 
derived using the Fitness Registry and the Importance of Exercise: a National 
Database (FRIEND) registry equation, derived from a large cohort of healthy US 
individuals who completed cardiopulmonary exercise testing88. 

iPOP participant surveys. Participants completed a survey on how the study 
had affected their eating and exercise habits, what they learned about their 
health during the study, whether they discussed findings with their doctor, 
any follow-up testing and other people they shared data with. This survey was 
initially administered anonymously but we then switched to surveys identified 
by participant identity. The quantitative results reported in Fig. 6 are from all 
participants who filled out an identifying survey (using the last filled out survey 
where there was more than one). We used participant comments from anonymous 
and identified surveys in Supplementary Table 27. At each quarterly visit, 
participants were asked about changes to health and medication. Participants were 
also asked by the study dietician how iPOP participation and CGM monitoring 
affected their health behaviors (Supplementary Table 28). 

Calculation of insulin secretion rates (ISR) and disposition index. We used 
the ISEC program89 to calculate the ISR from deconvolution of C-peptide 
measurements from plasma sampled at various time points during the OGTT (at 
minutes 0, 30 and 120). The deconvolution method uses population-based kinetic 
parameters15 for C-peptide clearance to estimate ISRs at other time points. ISR 
was reported in pmol kg−1 min−1 at every 15-min time interval between 0 and 120 
minutes. The disposition index was calculated as the ISR at 30 min (ISR30) times 
the Matsuda index, which was calculated as in Cersosimo et al.14. Disposition index 
was reported as (pmol kg−1 min−1)/(mg ml−1 ×µU ml−1). 

Cluster analysis and association of disposition index with multi-omics measures. 
ISRs were row standardized across the nine time points from an OGTT sample and 
then clustered via the k-means clustering algorithm in R (v.3.5) (function ‘kmeans’), 
with k=4. Simple linear models were used to associate the disposition index with each 
multi-omics analyte. Values for multi-omics analytes were from the time point closest 
to the OGTT date. Adjustment of P values for multiple testing was performed using 
the Benjamini–Hochberg method, with an adjusted P<0.10 used to identify analytes 
significantly associated with the disposition index. 

ASCVD and adjusted ASCVD risk score calculation. The ASCVD pooled cohort 
risk equations were implemented according to the instructions in the 2013 ACC/ 
AHA Guideline on the Assessment of Cardiovascular Risk34, using SAS v.9.4 
statistical software. The baseline time point was used for all participants except 
those that turned 40 during the study. In these cases, the first time point after age 
40 was chosen. Participants under the age of 40 (n = 7) for the entire duration 
of the study were assigned the age of 40 for the purposes of ASCVD risk score 
calculation. To calculate the optimal risk for someone of a particular, age, sex and 
race, we used total cholesterol of 170, HDL of 50, and systolic blood pressure of 110 
with no blood pressure medications, diabetes or smoking. Adjusted ASCVD risk 
score was calculated by subtracting the optimal ASCVD risk score for a person of 
the same age, sex and race, from the participant’s ASCVD risk score. 

Association of multi-omic analytes and adjusted ASCVD risk score. First, a 
median value was calculated for each analyte in each participant using healthy time 

points. A minimum of three healthy visits per participant was required. Spearman 
correlations were then calculated between adjusted ASCVD risk score and the 
median value of each multi-omics analyte. Associations were considered significant 
for analytes with q < 0.2. FDR correction was performed using the ‘qvalue’ package 
(v.1.36.0) in R (v.3.0.1). 

Correlation network analysis. Spearman correlations among molecules 
significantly associated with disposition index and adjusted ASCVD risk score 
were calculated using the rcorr function in the ‘Hmisc’ package (v.3.15-0) in R 
(v.3.0.1) and P values were corrected for multiple hypothesis using Bonferroni. 
Correlation networks were plotted using the R package ‘igraph’ (v.0.7.1) and 
the layout used was Fruchterman–Reingold. Edges represent correlations with 
Bonferroni-corrected P <0.05 and 0.10 for the disposition index and ASCVD risk 
score, respectively. 

Linear mixed models (healthy-baseline and dynamic models). SAS v.9.4 Proc 
Mixed was used to perform linear mixed model analysis using the full maximum 
likelihood method of estimation and the between-within method for estimating 
degrees of freedom. We used a random intercept model with an unstructured 
covariance matrix for all analytes. Since linear time explained only a small amount 
of within-person variation in FPG (1.2%) and HbA1C (5.0%) at healthy time 
points, we did not include time in our models. The outcome measures (FPG, 
HbA1C and hsCRP) were log transformed in all models and the analytes were 
standardized to a mean of zero and standard deviation of one. All models were 
controlled for sex and age at consent. The healthy-baseline models used data from 
healthy quarterly visits. The dynamic analysis used the ratio to the first available 
time point for each outcome measure and analytes and used all time points in the 
study. P values were corrected for multiple hypothesis testing using the Benjamini– 
Hochberg procedure. Significant analytes have Benjamini–Hochberg FDR < 0.2. 

Data reporting. In reporting results we considered consistency between models 
and results, validation through literature review of emerging molecules and 
relevance to disease state or risk condition. We also considered whether differing 
results varied because of sensitivity and variability of measures, the difference 
between evaluating absolute baseline values versus relative change and the 
potential for biological saturation. 

Multi-omics outlier analysis. Z scores (mean of zero and standard deviation of 
one) were calculated after log2-transformation for all measures in all participants 
and outliers were defined as absolute Z > ninety-fifth percentile. Associated P 
values were calculated assuming a normal distribution. P values were corrected for 
multiple hypothesis using the Benjamini–Hochberg procedure. 

Stroke genes outlier analysis. Z scores were calculated as described above for 14 
of 32 genes recently identified as being associated with stroke and stroke types40. 
The 14 genes that we detected in our RNA-seq dataset were as follows: CASZ1, 
CDK6, FURIN, ICA1L, LDLR, LRCH1, PRPF8, SH2B3, SH3PXD2A, SLC22A7, 
SLC44A2, SMARCA4, ZCCHC14 and ZFHX3. A composite Z score was calculated 
by summing the individual gene Z scores. 

Pathway enrichment analysis. The web tool IMPaLA v.11 (build April 2018; 
integrated molecular pathway-level analysis, http://impala.molgen.mpg.de) was 
used for the joint pathway analysis of proteins (from SWATH–MS) and metabolites 
(from LC–MS) abundances. Uniprot and HMDB accession numbers were used 
for proteins and metabolites, respectively. Pathway significance for proteins and 
metabolites separately was calculated using a hypergeometric test; the whole space 
of proteins and metabolites described in the pathways were used as a background. 
Joint P values combining protein and metabolite pathways are calculated using 
Fisher’s method. Multiple comparisons are controlled for using the Benjamini– 
Hochberg procedure90. 

Exercise sub-study analysis. ASCVD risk scores were calculated using cholesterol 
laboratory results closest to the exercise study date using the same method as 
that used for the baseline ASCVD risk scores. Correlation analysis was done with 
’corrplot’ package in R (v.3.3.2). The network was plotted using Cytoscape v.3.4.0 
(ref. 91), where edges represent correlations with statistically significant Spearman’s 
values (FDR < 0.2). False discovery rate correction was performed using the 
‘qvalue’ package (v.1.36.0) in R. The distance between nodes represents the strength 
of the pull between a node and its connected neighbors. The larger the value, the 
closer the distance between the two nodes. The system was iterated until dynamic 
equilibrium using the prefuse force directed layout92. 

Microbiome diversity: univariate models. Shannon diversity was calculated with 
SAS v.9.4 using a code adapted from Montagna93. SAS v.9.4 Proc Mixed using 
a restricted maximum likelihood estimation of the between–within degrees of 
freedom method was used to model the association of HbA1c, FPG and SSPG 
and Shannon diversity H’ index. Preliminary analyses were done in Proc Gam 
and suggested an ‘inverse u’ distribution for all three measures in relationship to 
the Shannon diversity index. HbA1C and FPG were modeled using a repeated 
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measures model with spatial power covariance structure. Shannon was entered into 
the model as a quadratic predictor of HbA1C and FPG. SSPG was modeled slightly 
differently because SSPG was only measured once in participants thus models 
with the predictor SSPG included Shannon diversity in the random statement. In 
addition, Shannon diversity as a quadratic term did not improve model fit and was 
not significant in any SSPG models so we present only the models with Shannon as 
a linear predictor (Supplementary Table 6). 

Microbiome diversity: multivariate model. For our multivariate model (SAS 
v.9.4 Proc Mixed), the full maximum likelihood method of estimation was used 
to enable comparison between models. The degree of freedom method was the 
between-within method. We used an unstructured covariance matrix for the 
models presented. In addition to the models presented in Supplementary Table 7, 
we also evaluated the effect of adding baseline BMI, consent age or metformin use 
to the model. None of these covariates added significantly to the model and thus 
were left out of subsequent models. In addition, we evaluated whether use of the 
Firmicutes/Bacteroidetes ratio in place of the phylum Bacteroidetes proportion 
would improve the model. However, the ratio accounted for substantially less 
within-person variation in Shannon diversity (10.4%) thus we kept the proportion 
of the phylum Bacteroidetes in the final model. 

Modeling individual Shannon diversity trajectories. We modeled the change in 
Shannon diversity over time for individual participants using a general additive 
model (SAS Proc Gam) that separates the linear and non-linear components of the 
trajectory. The F-test of the model using time as a predictor of Shannon diversity 
was compared to the null model and was calculated according to SAS usage note 
32927: http://support.sas.com/kb/32/927.html (accessed March 2018). 

SSPG and OGTT prediction models. Reprocessing of microbiome data. For the 
prediction models, the microbiome 16S reads were reprocessed using QIIME 
2 (ref. 94) (https://qiime2.org) and the DADA2 (ref. 95) denoising plugin. Te 
resulting read depth was 18,885 ± 11,852 (mean ± s.d.) following paired-end 
joining, removal of chimeric reads and removal of samples with <7,000 read depth. 
Taxonomic assignment was carried out using a naïve Bayes classifer trained on the 
above primers with the 99% 13_8 GreenGenes operational taxonomic unit dataset 
as reference sequences96. DADA2 facilitates cross-study comparison by providing 
DNA sequences of features thus making it more appropriate for prediction models 
that will eventually need further external validation97. 

Feature selection. Features from multi-omics (clinical laboratory results, 
transcriptome, immunome, proteome, metabolome, lipidome and microbiome) 
were standardized to zero mean with unit variance. Clinical laboratory (including 
SSPG), immunome and metabolomics data was log transformed before 
standardization. The variance stabilizing transformation had been used for RNA-
seq data. The sample IDs used for each SSPG and OGTT model are provided in 
Supplementary Data Tables 5–24. We then used the ‘MXM’ R package27 (v.0.9.7) 
with the Max-Min Parents and Child algorithm (MMPC)26 option to identify 
features that are parents or children of SSPG in a Bayesian network constructed 
from all the available data. The features selected by the algorithm are hypothesized 
to be direct causes or effects of SSPG in the data, as each feature selected are 
SSPG dependent when conditioned on every possible subset of the other features. 
These features provide novel information about SSPG and are thus most useful 
for prediction. There were 41 participants with SSPG values and all multi-omics 
data. Feature selection was performed using leave-one-out cross validation, where 
41 training sets were constructed and each training set excluded the data from a 
different patient. We ran the MMPC algorithm on each training set. Features that 
were identified by the MMPC algorithm in ≥20% of training sets were used as 
features in the model. For the OGTT predictive model, there was no lipidomics 
data available. 

Ridge regression. Ridge regression was performed using R (v.3.4.1). For each -ome, 
we used the sample at the closest time point that was equal or before the time point 
of the patient’s SSPG/OGTT measurement. We performed leave-one-out cross 
validation to maximize available training data. For each training set, we optimized 
the hyperparameter by performing a grid search and selecting the model that 
minimizes test error. The predicted SSPG/OGTT value was the value from the 
cross-validation iteration in which that SSPG/OGTT data point and its associated 
features were excluded from the training set. We used these predicted values to 
calculate MSE and R2 values. The value of the hyperparameter used was the average 
of the hyperparameters that minimized test error during cross validation. 

Ethnicity principal components analysis (PCA) plot. Ethnicity information for 
72 individuals in the study was broadly classified into the five 1,000GP Consortium 
super-population definitions, which are, namely, African (AFR), East Asian (EAS), 
European (EUR), South Asian (SAS) and admixed American (AMR). Individuals 
who self-identify as Indians from South Asia were categorized as SAS (n = 7), 
Hispanics and Latinos as AMR (n = 3), East Asians as EAS (n =8), Caucasians as 
EUR (n = 50) and African Americans (n = 4) as AFR. The ethnicity information 
from the 2,504 samples, definitions of the populations and super-populations and 

genetic information of the 1,000GP were obtained from ftp://ftp.1000genomes.ebi. 
ac.uk/vol1/ftp/release/20130502/ (downloaded in April 2017). 

The following filters were first implemented for each individual genome for the 
study: (1) we removed indels, leaving only the single-nucleotide variants (SNVs), 
(2) we removed SNVs without the ‘PASS’ tag, (3) we kept SNVs with a minimum 
read depth of 1 and (4) we removed SNVs with missing genotypes. We then 
intersected the genetic loci from 72 individuals and the samples from the 1,000GP 
to obtain 6,653 SNVs common to both datasets. To reduce the chance of linkage 
disequilibrium and dependency between SNVs due to close proximity, we further 
thinned out the SNV set by taking every third SNV. Finally, we had a combined set 
of 2,576 samples and 2,318 SNVs that we used for PCA. We used the smartpca tool 
in the PLINK2 suite to generate the PCA98. 

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article. 

Data availability 
Raw omics data (transcriptome, immunome, proteome, metabolome, microbiome) 
included in this study are hosted on the NIH Human Microbiome 2 project site 
(https://portal.hmpdacc.org/) under the T2D project along with clinical laboratory 
data to 2016. Data from participants who have not consented to make their data 
public are available on dbGAP (accession phs001719.v1.p1). Additional data 
unique to this manuscript has been provided in the Supplementary Data files. 
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Extended Data Fig. 1 | integrated personalized omics profiling cohort flow chart and genetic ancestry. a, The flow chart demonstrates recruitment and 
enrollment of the iPOP cohort. b, PCA plot showing the ancestries of 72 participants. The reference includes 2,504 samples from the 1,000GP11. Each 
filled circle is a 1,000GP sample, colored by the super-population of ancestral origin, namely African (AFR; red), admixed American (AMR; purple), East 
Asian (EAS; green), European (EUR; cyan) and South Asian (SAS; orange). Each black symbol is an individual from the study, which we categorized by self-
reported ethnicity consistent with the 1,000GP super-population definitions, namely AFR (black filled circle), AMR (black filled triangle), EAS (black filled 
square), EUR (black plus sign) and South Asian (a checked box). We see that the individuals in our study have self-reported ancestries generally clustering 
in the super-population reference panel from the 1,000GP. 
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Extended Data Fig. 5 | Multi-omics of glucose metabolism and inflammation. a, Proteins and metabolites associated with HbA1C, FPG and hsCRP using 
healthy-baseline and dynamic linear mixed models. Healthy-baseline models (HbA1C n= 101, samples 560; FPG n= 101, samples 563; hsCRP n= 98, 
samples 518) account for repeated measures at healthy time points. Dynamic models are similar models except that analytes are normalized across 
individuals to the first measurement and all time points in the study are used (HbA1C n= 94, samples = 836; FPG n= 94, samples = 843; hsCRP n= 92, 
samples 777). Individual analyte P values were determined using a two-sided t-test. Multiple testing correction was performed and molecules were 
considered significant when Benjamini–Hochberg FDR < 0.2. Model estimates were normalized in each condition so the maximum value equal to 1 and the 
minimal value equal to −1. b, Integrative pathway analysis using IMPaLa67 of proteins and metabolites associated with HbA1C (n= 101, samples 560), FPG 
(n= 101, samples 563) and hsCRP (n= 98, samples 518) as determined by the healthy-baseline models (Benjamini–Hochberg FDR < 0.2 at molecule level) 
that matched to known pathways. Significance of pathways for proteins and metabolites separately is determined by the hypergeometric test (one-sided) 
followed by Fisher’s combined probability test (one-sided) to determine combined pathway significance (Benjamini–Hochberg FDR < 0.05; n’s of proteins 
and metabolites for each pathway are provided in Supplementary Tables 9, 11 and 13). 
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a Number of RNA outliers b Longitudinal profiling of selected molecules 
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Extended Data Fig. 6 | Outlier Analysis of RNA-seq data. a, Number of outlier RNA molecules (95th percentile) in each participant. Outlier analysis was 
performed on Z scores calculated on the median expression level of each gene at healthy visits in individuals with at least three healthy visits (n= 63). The 
box is defined as 25th and 75th quartile. The upper whisker extends to 1.5 times the interquartile range from the box and the lower whisker to the lowest 
data point. The horizontal bar in the box is the median value. b, Selected clinical laboratory and metabolite trajectories (seven measurement time points) 
for participant ZJTKAE3 showing a concomitant increase of bile acids and glutamyl dipeptides with ALT (alanine aminotransferase) and AST (aspartate 
aminotransferase). 
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Extended Data Fig. 7 |Multidimensional cardiac risk assessment. a, Distribution of ASCVD risk scores (n= 35 participants, 36 measurements) and cardiovascular 
imaging and physiology measures that have been established as cardiovascular risk markers. (Abbreviations: RWT-relative wall thickness, LV GLS-left ventricular 
global longitudinal strain, E/e’ - ratio of mitral peak velocity of early filling (E) to early diastolic mitral annular velocity (e’), PWV-pulse wave velocity). Please 
note that thresholds for PWV are age-related. Box plots were derived to display quartiles (Q1, median, Q3) with the upper whisker being Q3 + 1.5 × (interquartile 
range) and the lower whisker extending to Q1 − 1.5 × (interquartile range) or the lowest data point. b, Ultrasound of carotid plaque (6 participants out of 35 had 
an ultrasound finding of carotid plaque) and relative distribution of ASCVD risk score, HbA1C and LV GLS in function of presence or absence of carotid plaque 
(Student’s t-test (two-sided) was used to evaluate differences between groups; n= 35, 36 measurements) (Abbreviations: CCA-common carotid artery; IJV-
internal jugular vein). Error bars represent one standard deviation from the mean (upper edge of box). c, Correlation network of selected metrics collected during 
cardiovascular assessment (Spearman correlation (two-sided) with q< 0.2; n= 35 participants with 36 measurements). d, Composite Z score of ZOBX723 
(unstable angina with stent placement) and ZNED4XZ (mild stroke with full recovery and transition to diabetes). For ZOBX723, day 829 occurred 3 weeks post-
stent placement. Day 679 was a mid-infection time point. For ZNED4XZ, day 699 was the time point before the participant’s transition to diabetes and day 846 
was the first diabetic time point. The stroke occurred on day 307 for this individual. Gray dots represent Z scores of other participants (n= 101 with 859 samples). 
e, Violin plot showing the same data as d (n= 101 with 859 samples). The box plot shows the first (lower edge of box), median (middle line) and third (upper edge 
of box) quartiles. The upper whisker is the third quartile + 1.5 × (interquartile range) and the lower whisker is the lowest data point. 
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