Life stress is strongly associated with poor mental and physical health (Cohen et al., 2007; Slavich et al., 2010). These effects exceed those of other well-known risk factors, such as tobacco use, excessive alcohol consumption, and physical inactivity (Holt-Lunstad et al., 2010), and account for substantial morbidity and mortality (Pedersen et al., 2011). Understanding how stress impacts health, and what factors mitigate these effects, is thus critically important.

One of the most important advances in this area of research involves the recent adoption of a life-course perspective for studying stress and health (Graham et al., 2006; Lupien et al., 2009). Theorists now generally appreciate that stress occurring over the lifespan can have a cumulative effect on health; however, few studies have actually measured lifetime stress exposure and assessed the effects that such exposure has on mental and physical health outcomes. This has occurred in part because no system has existed for measuring cumulative...
stress exposure in an efficient, cost-effective manner. This issue has been addressed by the development of automated stress assessment systems such as the Stress and Adversity Inventory (STRAIN), which measures individuals’ lifetime exposure to different types of stress that influence the onset and progression of disease (Slavich and Epel, 2010). As a result, researchers are now poised to assess the effects that cumulative life stress exposure has on health and to examine factors that might modify these effects.

One factor that may influence the effects that cumulative stress exposure has on health is forgiveness. Forgiveness is the release of negative—and the potential enhancement of positive—feelings, emotions, and behaviors toward an offender (Enright et al., 1998). Research has demonstrated that forgiveness is associated with several mental health outcomes, including less anxiety, depression, and other major psychiatric disorders (Hirsch et al., 2011; Lin et al., 2004; Ryan and Kumar, 2005; Toussaint and Cheadle, 2009a; Toussaint et al., 2008). Forgiveness is also associated with better physical health and with physiological profiles that underlie good health. In this context, forgiveness predicts fewer physical health symptoms, better overall physical health (Lawler et al., 2005; Seawell et al., 2014), healthier cardiovascular responses to stress (Lawler et al., 2003), and lower rates of cardiovascular disease (Friedberg et al., 2007; Toussaint and Cheadle, 2009b; Waltman et al., 2009). As can be expected, forgiveness is thus also associated with lower rates of mortality (Krause and Hayward, 2013; Toussaint et al., 2012).

Forgiveness has been conceptualized as an emotion-focused coping process or style that can help people manage negative psychological and emotional experiences (i.e. unforgiveness) evoked by interpersonal conflict and stress (Strelan and Covic, 2006; Worthington and Scherer, 2004). From this perspective, forgiveness is just one of several approaches that individuals can use to cope; however, it has been proposed as one of the more healthy options for dealing with adversity (Worthington and Scherer, 2004). Hence, to the extent that the victim of an offense can cope with the ensuing stress of unforgiveness through forgiveness, the negative effects of stress on health should be mitigated. Like many psychological constructs, forgiveness can be both a state and a trait (Berry et al., 2001; Roberts, 1995). Trait forgiveness has been called forgivingness, and high levels of forgivingness are thought to predispose a person to experience state forgiveness more often. Put another way, a stronger dispositional proclivity toward forgiveness is hypothesized to increase the experience of forgiveness that in turn mitigates the negative effects of stress. Forgivingness is thus a coping style that may play a salutary role in the stress–health relationship.

Studies have shown that perceptions of stress fully mediate associations between forgiveness and mental and physical health symptoms (Green et al., 2012), and that forgiveness partially mediates the link between traumatic stress exposure and post-traumatic stress disorder symptoms (Orcutt et al., 2005). In contrast to this mediational work, little research has examined whether forgivingness moderates or buffers associations between stress and health, despite the fact that the transactional model and the adapted stress and coping model of forgivingness offer the theoretical flexibility to consider coping variables as both mediators and moderators (Lazarus and Folkman, 1984). Evidence suggests that reductions in stress perceptions may help explain why forgiveness is related to health (Green et al., 2012; Orcutt et al., 2005), but to date it is not known if forgiveness offers a protective benefit in the stress–health equation. Demonstrating a buffering effect of forgivingness on stress-related health symptoms requires evidence of moderation.

To address these issues, we assessed the lifetime stress exposure histories, forgivingness levels, and mental and physical health of 148 young adults. Based on the aforementioned research, we hypothesized that greater severity of lifetime stress exposure would be associated with poorer mental and physical health. We tested these associations using
indices of overall severity of exposure to stress, but also assessed these effects using 20 different subdomain indices of stress exposure across 2 time periods (i.e. early life, adulthood), 2 stressor types (i.e. acute, chronic), 11 life domains (e.g. housing, education, work, etc.), and 5 different social–psychological characteristics (e.g. interpersonal loss, physical danger, humiliation, etc.). Second, we hypothesized that greater forgivingness would be associated with better mental and physical health. Finally, we hypothesized an interaction between severity of lifetime stress exposure and forgivingness, such that higher levels of forgivingness would buffer the negative effects of stress severity across all domains on mental and physical health symptoms.

Method

Participants and procedures

Participants were 148 young adults recruited from a mid-sized liberal arts college campus in the Midwest. Most of the participants (99%) began college in the past 4 years. The sample was 54 percent women, with a mean age of 19.32 years (standard deviation (SD) = 2.80). Less than 1 percent of participants were married, 29 percent were in a serious relationship, 12 percent were dating, and 60 percent were single. Over 99 percent had no children. Participants provided written informed consent and completed all of the measures online for course credit. Finally, all study procedures were approved by the local Institutional Review Board.

Measures

Lifetime stress exposure. The STRAIN is an online stress assessment system that measures individuals’ lifetime exposure to 96 different types of acute and chronic stress that affect health (Slavich and Epel, 2010; see http://www.uclastresslab.org/STRAIN). The system combines the reliability and sophistication of an interview-based measure of stress with the simplicity of a self-report instrument. Questions appear on the computer screen, and for each endorsed stressor, users are asked a series of follow-up questions that ascertain the severity, frequency, timing, and duration of the stressor. Example items are, “Have you ever found out that a partner was unfaithful to you?” and “Have you ever looked for a job for at least six months, but were unable to find a stable job?” The validity of this question set has been demonstrated in the context of predicting metabolic health (Kurtzman et al., 2012), cancer-related fatigue (Bower et al., 2014), and psychological and physical health (Slavich and Epel, in preparation). Lifetime stressor “count” can range from 0 to 96 and cumulative “severity” can range from 0 to 480, with higher scores representing higher stressor count and severity, respectively. In addition, 20 subscale scores can be computed to index stress exposure occurring across 2 time periods (early life, adulthood), 2 stressor types (acute, chronic), 11 life domains (housing, education, work, treatment/health, marital/partner, reproduction, financial, legal/crime, death, life-threatening situations, and possessions), and 5 social–psychological characteristics (interpersonal loss, physical danger, humiliation, entrapment, and role change).

Forgivingness. The Heartland Forgive Scale (HFS) is an 18-item measure of forgivingness, which assesses the general disposition toward engaging in all types of forgiveness. Responses are given on a 1 (almost always false of me) to 7 (almost always true of me) scale, and scores can range from 18 to 125, with higher scores representing more forgivingness. Psychometric work on the HFS shows acceptable confirmatory factor analyses, convergent/divergent validity, and internal and test–retest reliability (Thompson et al., 2005). Internal consistency for the HFS for this study was excellent (α = .90).

Mental health symptoms. The Kessler 6 (K6) measures nonspecific psychological distress. Responses are given on a 1 (never) to 5 (very often) scale, and scores can range from 6 to 30, with higher scores representing more distress.
The K6 possesses excellent psychometric properties (Kessler et al., 2002, 2010). Internal consistency for the K6 for this study was excellent ($\alpha = .90$).

Physical health symptoms. The 14-item Physical Health Questionnaire (PHQ) assesses somatic symptoms (Spence et al., 1987). Responses to 12 items are given on a 1 (not at all) to 7 (all the time) scale, and responses to 3 items are given on a 0 times to 7+ times scale. Scores range from 14 to 98, with higher scores representing more physical health symptoms. Psychometric work on the PHQ shows acceptable exploratory and confirmatory factor analysis, excellent convergent/divergent validity, and strong internal consistency (Schat et al., 2005). Internal consistency for the PHQ for this study was good ($\alpha = .82$).

Analyses

Preliminary analyses included descriptive statistics and bivariate correlations for all study variables. Primary analyses included hierarchical regression models that examined direct and interactive effects of lifetime stress severity and forgivingness on health. Life stress and forgivingness were entered as direct effects on Step 1, and the Life Stress \times Forgivingness interaction effect was entered in Step 2. Simple slopes analyses followed guidelines described by Cohen et al. (2003). These analyses involved examining the effects of life stress on health at low, moderate, and high levels of forgivingness. Data were examined for adherence to assumptions, and the alpha level was set at $p < .05$.

Results

Preliminary analyses

On average, participants experienced nearly 13 major life stressors each and rated those stressors as being moderately stressful ($M = 3.08$; range = 1–5). Participants reported levels of overall forgivingness that were relatively high ($M = 87.56$, $SD = 15.20$), and a moderate number of mental ($M = 13.91$, $SD = 5.24$) and physical health symptoms ($M = 35.65$, $SD = 11.29$). The most frequently reported stressors involved keeping up with the demands of college, death of a close friend or loved one, isolation and loneliness, relationship difficulties, and financial problems. In bivariate analyses, most of the 20 stress severity indices were strongly associated with poorer health. As shown in Figure 1, only reproductive-, legal/criminal-, death-, and theft-related stressors were unrelated to health. Given the consistency across stress indices, subsequent analyses utilized total stress severity score as the main stress variable. Greater total lifetime stressor severity was strongly associated with having more mental ($r = .54$, $p < .001$) and physical ($r = .55$, $p < .001$) health symptoms. In contrast to stress, forgivingness was negatively related to mental ($r = -.48$, $p < .001$) and physical health symptoms ($r = -.35$, $p < .001$). Additionally, greater lifetime stress severity was negatively related to forgivingness ($r = -.26$, $p < .01$, and $r = -.33$, $p < .001$, respectively). As expected, participants experiencing more mental health symptoms also experienced more physical health symptoms ($r = .56$, $p < .001$).

Primary analyses

Lifetime stress severity, forgivingness, and mental health. As hypothesized, forgivingness significantly moderated the effects of lifetime stress severity on mental health ($\beta = -.173$, $p < .01$; see Table 1, Mental Health Model 2). Planned simple slopes analyses revealed a graded moderating effect of forgivingness on mental health symptoms. Specifically, participants with low levels of forgivingness (1.5 SDs or more below the mean) showed the strongest associations between lifetime stress severity and mental health symptoms ($\beta = 0.68$, $p < .05$), followed by participants exhibiting moderate amounts of forgivingness (within 1.5 SDs of the mean) ($\beta = 0.41$, $p < .05$), and finally by participants with high levels of forgivingness (1.5 SDs or more above the mean) ($\beta = 0.15$, $p > .05$). This graded interaction effect is depicted graphically in Figure 2. Also as hypothesized, lifetime stress severity and forgivingness were both uniquely associated with...
mental health symptoms, with greater lifetime stress severity predicting more mental health symptoms ($\beta=0.42$, $p<.001$) and higher levels of forgiveness predicting fewer mental health symptoms ($\beta=-0.34$, $p<.001$) (see Table 1, Mental Health Model 1).

Figure 1. Associations between severity of lifetime stress exposure and (a) mental and (b) physical health symptoms, categorized by stressor timing, type, primary domain, and core social–psychological characteristic. Error bars represent 95 percent confidence intervals ($N=148$).
Lifelong stress severity, forgivingness, and physical health. Next, the effects of lifelong stress severity and forgivingness on physical health symptoms were examined. Contrary to our hypothesis, forgivingness did not moderate the effects of cumulative lifelong stress severity on physical health ($\beta = -0.02$, $p > .05$; see Table 1, Physical Health Model 2). As hypothesized, lifetime stressor severity and forgivingness were both uniquely associated with physical health symptoms, with greater lifetime stress severity predicting more physical health symptoms ($\beta = 0.49$, $p < .001$) and higher levels of forgivingness predicting fewer symptoms ($\beta = -0.19$, $p < .01$; see Table 1, Physical Health Model 1).

Discussion

Although early and adulthood life stress are known to be strongly associated with a broad range of mental and physical health problems...
(Cohen et al., 2007; Conway et al., 2014; Slavich and Irwin, 2014; Taylor, 2010), few studies have actually measured the severity of lifetime exposure to stress and examined its effects on health. Moreover, the coping styles that might moderate such effects remain unclear. We addressed these important issues by studying 148 young adults who were well characterized with respect to their lifetime stress exposure history, tendency to employ the coping style of forgivingness, and recent mental and physical health symptoms. Consistent with prior work on early and adulthood life stress and health (Cohen et al., 2007; Graham et al., 2006; Lupien et al., 2009; Pearlin et al., 2005), we found that greater stress exposure severity over the lifespan was associated with poorer mental and physical health. These effects were robust while controlling for mental health symptoms in the physical health models, and vice versa, and were present for most of the 20 different stress severity indices that we calculated using the STRAIN.

Hypotheses regarding relations between forgivingness and mental and physical health were based on research showing that people with coping styles involving forgivingness have better overall health (Toussaint and Webb, 2005; Worthington et al., 2007). The present data are consistent with this research, but show for the first time that forgivingness is a strong, independent predictor of mental and physical health while controlling for the effects of lifetime stress severity on health. Prior research has shown that associations between forgiveness and health are substantially attenuated or eliminated while controlling for perceptions of stress (Lawler et al., 2005). However, it is possible that a side effect of higher forgiveness is reduced perceptions of stress. By measuring actual lifetime stress severity and not merely levels of general perceived stress, the present findings offer new insight into how the effects of stress might be offset by the independent effects of forgivingness.

That forgivingness predicts mental and physical health over and above stress severity dovetails with intervention work showing that facilitating experiences of forgiveness improves mental and physical health (Baskin and Enright, 2004; Wade et al., 2005; Waltman et al., 2009). As such, personally cultivating this emotion-focused coping style may offer health benefits independent of the life stressors that an individual might face. To the extent that forgiveness training can promote a more forgiving coping style, then these interventions may help reduce stress-related disease and improve human health. Such interventions may be particularly beneficial when delivered as a prevention strategy in early life, before individuals are exposed to major adulthood life stressors and before disease processes have begun to take hold.

This study also examined whether forgivingness moderates the effects of lifetime stress severity on health. Existing research in this area has evaluated whether perceived stress mediates the effects of forgiveness on health, and how forgiveness mediates the relation between stress and health. Additionally, both theory and research suggest that forgivingness may moderate the effects of stress on health by acting as an important coping style (Strelan and Covic, 2006; Worthington, 2003; Worthington and Scherer, 2004). To our knowledge, however, no studies to date have examined whether forgivingness moderates the effects of stress on health. Here, we demonstrated for the first time that forgivingness does buffer the negative effects of lifetime stress severity on mental health, and that this moderation occurs in a graded fashion. Specifically, we found that lifetime stress severity was unrelated to mental health for persons who were highest in forgivingness, significantly associated with poorer mental health for persons exhibiting moderate levels of forgivingness, and most strongly related to poorer mental health for participants exhibiting the lowest levels of forgivingness.

The present data do not reveal how forgivingness buffers the effects of lifetime stress severity on mental health, but several explanations are possible. First, more forgiving individuals may have a more adaptive or extensive repertoire of coping strategies that mitigate the negative effects of stress on health. Consistent
with this possibility, research has shown that people with higher levels of forgiveness also have a greater tendency to use problem-focused coping and cognitive restructuring, and are less likely to use rumination, emotional expression, and wishful thinking (Ysseldyk and Matheson, 2008). Second, forgiveness may dampen emotional, physiologic, or genomic components of the stress response that lead to poor health (Slavich and Cole, 2013; Strelan and Covic, 2006; Worthington, 2003; Worthington and Scherer, 2004). Finally, forgiveness may facilitate healthier behaviors in the aftermath of major life stress or may prompt a more active approach to dealing with stress that involves addressing the aspects of stress that are controllable (Webb et al., 2010, 2013). Additional research is needed to evaluate how these different factors influence the effects of stress and forgiveness on health.

Contrary to our hypothesis, forgiveness did not moderate the effects of lifetime stress severity on physical health. This may have occurred because the sample included healthy young adults. However, the average level of physical health symptoms was well above the minimum score for the scale and the standard deviation was also relatively large, indicating a moderate level of somatic complaints and notable individual variability. Also, bivariate scatter plots (not shown) did not indicate skew or range restriction. Finally, both stress exposure and forgiveness levels predicted significant amounts of variability in physical health symptoms. In short, the fact that forgiveness did not moderate the effects of stress on physical health was not likely due to statistical issues.

Another possible reason for the contrasting pattern of results for mental and physical health may involve the fact that although participants experienced approximately 13 different stressors (on average), these stressors may not exert effects on physical health that are readily mitigated by forgiveness. This possibility is consistent with the “goodness of fit” hypothesis, which suggests that a person’s coping style must be relevant and useful for dealing with the type of stress experienced for the method to confer health benefits (Forsythe and Compas, 1987). In the present study, the most frequently reported stressors involved dealing with educational demands, death of a close friend or loved one, isolation and loneliness, relationship difficulties, and financial problems. These stressors may well exert an immediate impact on mental health processes (e.g. increased anger, frustration, or rumination) that are buffered by forgiveness, but have an effect on physical health processes (e.g. increased inflammatory activity) that are not as strongly influenced by forgiveness (Berry et al., 2005; Finan et al., 2011; Michl et al., 2013; Slavich et al., 2010). In short, the time-course of forgiveness-based health benefits may differ for mental and physical health with the latter being more protracted. Indeed, previous research has documented delayed cardiovascular benefits of forgiveness (Waltman et al., 2009). Additional research is thus needed to identify the types of stress that best fit the forgiveness coping style and that in turn benefit physical health. Given that the STRAIN is a relatively comprehensive measure of lifetime stress exposure, it is unlikely that we failed to assess major types or dimensions of stress that could have interacted with forgiveness to affect health. Nevertheless, this presents an interesting challenge for future studies—namely, to determine if there are specific types of stress for which forgiveness is an ideal coping style that has physical health benefits.

Limitations of this study should also be noted. First, this is a cross-sectional, correlational study and, as such, conclusions about directionality and causality cannot be made. At the same time, recent longitudinal research has shown that forgiveness predicts health symptoms but that health symptoms do not predict forgiveness (Seawell et al., 2014), making reverse causation less likely. Second, although we focused on major life stressors, other forms of stress may also be relevant for mental and physical health and may be buffered by forgiveness, including daily hassles, role strain, and traumatic life stress. Third, health was self-reported, and although the measures we used were psychometrically sound, objective measures of health status should also
be investigated. Fourth, we did not examine potentially important sex differences, and future studies with larger samples might address this question. Finally, this study utilized a convenience sample. Additional research is thus needed to examine the generalizability of the findings.

Notwithstanding these limitations, the present data are the first to demonstrate that lifetime stress severity and forgivingness both have unique, independent effects on mental and physical health. Moreover, they are the first to show that forgivingness significantly moderates the effects of lifetime stress severity on mental health. Knowing that forgivingness buffers the relation between stress and poor health may provide a unique opportunity for reducing stress-related disease by developing programs that help individuals cultivate greater forgivingness. More broadly, these findings address the important question of how key risk and resilience factors interact to influence mental and physical health problems that cause substantial morbidity and mortality.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was supported by National Institutes of Health (NIH) grant R01 CA140933 and a Society in Science—Branco Weiss Fellowship to George Slavich, and by a University of California, Davis Provost’s Fellowship in the Arts, Humanities, and Social Sciences to Grant Shields.

Notes
1. The stressor count and severity correlation exceeds .95. This occurs because stressor severity scores are based in part on how many stressors participants experience. Severity was used as the stress measure in this study, although results are virtually identical using stress count or severity.
2. Mental health was controlled for in models of physical health and vice versa. Results remained virtually unchanged as a result of inclusion/exclusion of the covariate.

References

