Stress-related changes in personality: A longitudinal study of perceived stress and trait pessimism

Grant S. Shields, Loren L. Toussaint, George M. Slavich

Article info

Article history:
Received 21 March 2016
Revised 13 July 2016
Accepted 23 July 2016
Available online 3 August 2016

Keywords:
Life stress
Perceived stress
Personality
Pessimism
Change
Affect
Longitudinal
Development
Modeling
Health

ABSTRACT

Although research has shown that certain aspects of personality can change over time, the determinants of such change remain unclear. Stress alters neural dynamics and precipitates disorders that shape personality traits involving negative affectivity. In this study, therefore, we assessed the perceived stress and pessimism levels of 332 young, middle-aged, and older adults for five weeks to examine how levels of stress and pessimism change and interrelate over time. The best fitting longitudinal model was a bivariate latent growth curve model, which indicated that stress and pessimism both changed and exhibited significant variability in change over time. Moreover, changes in stress were associated with changes in pessimism. Pessimism thus changes over time, with alterations in stress potentially structuring these changes.

1. Introduction

Early research on personality largely conceptualized personality traits as relatively stable constructs that do not readily change over time (Costa & McCrae, 1988). In contrast with this historical view of personality, however, studies of personality occurring over the past few decades have produced substantial evidence that personality can change across time and development (e.g., Bleidorn, 2012; Bleidorn, Kandler, Riemann, Angleitner, & Spinath, 2009; Helson & Wink, 1992; Jayawickreme & Blackie, 2014; Roberts & Mroczek, 2008; Roberts, Walton, & Viechtbauer, 2006; Robins, Fraley, Roberts, & Trzesniewski, 2001). For example, in an influential meta-analysis of mean-level changes in personality traits across time, Roberts et al. (2006) found that social dominance, agreeableness, conscientiousness, and openness to experience increase from younger to upper-middle age in adulthood, whereas social vitality and neuroticism decrease over that same time period. Research has also shown that personality can fluctuate across shorter timescales than years (Fleeson, 2001; Fleeson & Jayawickreme, 2015), with within-person changes in personality potentially occurring over days and representing more than just fluctuations in affect (Wilson, Thompson, & Vazire, 2016). Because changes in personality traits such as neuroticism and conscientiousness predict subsequent changes in health (Magee, Heaven, & Miller, 2013; Turiano et al., 2012) and even mortality (Mroczek & Spiro, 2007), it is important to understand factors that contribute to changes in personality over time. To date, however, these factors remain largely unknown.

Psychological stress is one process that may play a role in shaping personality, especially aspects of personality involving negative affectivity. Stressors are circumstances or situations that are perceived as threatening or challenging, or that exceed a person’s ability to cope (Allen, Kennedy, Cryan, Dinan, & Clarke, 2014; Monroe & Slavich, 2016). Exposure to a stressor elicits subjective feelings of stress as well as a biological reaction known as the stress response, which includes upregulation of the hypothalamic–pituitary–adrenal axis, sympathetic nervous system, and innate immune system (Allen et al., 2014; Dickerson & Kemeny, 2004; Slavich, O’Donovan, Epel, & Kemeny, 2010; Steptoe, Hamer, & Chida, 2007). The characteristics that stressors possess can be important factors influencing...
the effects that such experiences have on individuals, but these effects are ultimately mediated by individuals’ stress appraisal (Slavich & Cole, 2013). As an example, stressors perceived as highly threatening have been shown to trigger strong stress responses while those perceived as less threatening do so to a lesser degree (Denson, Spanovic, & Miller, 2009; Gaab, Rohleder, Nater, & Ehlert, 2005; Lebois, Hertzog, Slavich, Feldman Barrett, & Barsalou, 2016).

Time-limited stress responses may not affect health, but stress can also exert sustained effects on neural structure and function, including in brain regions that subserve representations of the self and others, social working memory, and threat perception (McEwen, 2007). As a result, stress has been implicated in the development of several highly recurrent and chronic forms of psychopathology, including anxiety disorders and depression (Slavich & Irwin, 2014), which can promote persistent changes in affective aspects of personality (Klein, Kotov, & Bufferd, 2011). Consistent with a hypothesized link between stress and personality, recent research has shown that major life transitions that occur infrequently over the life course, such as graduating from high school, can prompt changes in personality (e.g., Bleidorn, 2012). It is possible that more frequently occurring stressors, such as stressful interpersonal interactions and unexpected or threatening events, also lead to changes in affective aspects of personality, but to our knowledge this issue has not yet been examined.

The personality trait of pessimism may be particularly likely to be influenced by stress. Pessimism is distinct from optimism (Marshall, Wortman, Kusulas, Hervig, & Vickers, 1992; cf. Kam & Meyer, 2012), and it is possible to be highly pessimistic and highly optimistic at the same time (Benyamini, 2005). Pessimism is positively correlated with neuroticism and inversely correlated with other Big 5 personality traits, such as agreeableness and conscientiousness (Kam & Meyer, 2012). Pessimism in adulthood is predicted by self-esteem in early and late adolescence (Heinonen, Räikkönen, & Keltikangas-Järvinen, 2005), and pessimism is predictive of numerous negative outcomes. For example, trait pessimism predicts delays in recovery following surgery (Bowley, Butler, Shaw, & Kingsnorth, 2003), disruption of social and leisure activities (Carver, Lehman, & Antoni, 2003), poorer quality of life in early-stage breast cancer patients (Carver et al., 1994), signs of biological aging including elevated inflammatory activity and telomere shortening (O’Donovan et al., 2009), and, finally, early mortality (Brummett, Helms, Dahlstrom, & Siegler, 2006; Schulz, Bookwala, Knapp, Scheier, & Williamson, 1996). Understanding how stress affects pessimism should thus be a high priority.

Prior research on links between stress and pessimism has been informative. For example, this work has revealed that levels of stress and pessimism are correlated (McCarthy, Cuskelly, van Kraayenoord, & Cohen, 2006). In addition, at least two studies that employed a common stressor approach found that pessimism levels in adult caregivers of children with attention deficit/hyperactivity disorder (ADHD; Baldwin, Brown, & Milan, 1995) or fragile X syndrome (McCarthy et al., 2006) are associated with the severity of these conditions, with worse ADHD symptoms and behavioral problems in children predicting greater pessimism in caregivers. Data like these suggest that changes in stress may be associated with changes in pessimism over time, but to our knowledge, this question has not been examined.

To address this issue, we recruited a large sample of young, middle-aged, and older adults from the community, and followed them longitudinally over five weeks. We selected this timeframe because daily assessments seemed too close in time for changes in stress to contribute to actual changes (rather than minor fluctuations) in levels of pessimism (cf. Wilson et al., 2016). Monthly assessments of these constructs would have also enabled us to test our hypotheses (below), but the limited resources we had to conduct this study would have only allowed us to perform two monthly assessments, which would not have permitted us to conduct the most appropriate analyses of change. Therefore, each week for five weeks, we assessed participants levels of perceived stress and pessimism, which enabled us to model changes in these two factors over a five-week time period.

Based on the extant research described above, we hypothesized that changes in perceived stress would be associated with changes in pessimism during the five week study period. To test this hypothesis, we fit three models to the data to evaluate different potential patterns of association in the data over time. The models belonged to three classes: cross-lagged regression, multivariate latent growth curve, and multivariate latent difference score models. Cross-lagged regression models assess changes in rank ordering (i.e., relative position of an individual around the average) rather than changes in actual values or scores on a measure over time. Latent growth models assess changes in values over time, rather than assessing changes in rank ordering. Finally, latent difference score models go beyond latent growth curves by assessing both overall rates of change and time point-to-time point change. All of these models, however, allow for an examination of how changes in one variable relate to changes in another variable.

2. Method

2.1. Participants and procedure

To increase the potential for study findings to generalize across a broad age range, we recruited 332 young, middle, and older aged adults (124 male, 208 female) from college campuses and the surrounding community. Participants ranged in age from 16 to 79 years old (M = 27.9, Median = 21) at the beginning of the study, with the number of individuals per age group listed in Table 1. To recruit this convenience sample, each member of a 34-person research team generated a list of 10 acquaintances and invited them to participate in the study. A total of 340 individuals were thus initially contacted, of which 332 responded to this initial invitation. Each research team member was in turn responsible for sending weekly reminders to their participants to maximize participation and minimize attrition. Using this retention strategy, the number of participants completing Time 1, Time 2, Time 3, Time 4, and Time 5 measures were 327, 298, 287, 273, and 240, respectively. Participants completed the study measures (see below) each week for five consecutive weeks and were instructed to think about the previous week when responding to the items. All participants provided informed consent before beginning the study and all study procedures received Institutional Review Board approval prior to the start of the study.

2.2. Materials

2.2.1. Perceived stress

Participants’ levels of perceived stress over the past week were assessed at each time point using the 10-item Perceived Stress Scale (Cohen, Kamarck, & Mermelstein, 1983), which is the most

<table>
<thead>
<tr>
<th>Age</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>16–19</td>
<td>36</td>
</tr>
<tr>
<td>20–29</td>
<td>220</td>
</tr>
<tr>
<td>30–39</td>
<td>6</td>
</tr>
<tr>
<td>40–49</td>
<td>20</td>
</tr>
<tr>
<td>50–59</td>
<td>40</td>
</tr>
<tr>
<td>60–69</td>
<td>6</td>
</tr>
<tr>
<td>70–79</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1 Sample stratified by age.
widely used instrument for measuring perceived stress. The scale assesses the extent to which a respondent views his or her life as being uncontrollable and unpredictable. An example item is, “During the past week, how often have you been upset because of something that happened unexpectedly?” Participants respond on a 5-point scale, ranging from 0 (Never) to 4 (Very Often). Internal consistency for the scale in this study was good across all five time-points (all αs ≥ 0.86).

2.2.2. Pessimism

Participants’ levels of trait pessimism were assessed at each time point using the pessimism subscale of the Life Orientation Test-Revised (Scheier, Carver, & Bridges, 1994), which is the most widely used measure of trait pessimism. In contrast to measures that assess state pessimism (e.g., Burke, Joyner, Czech, & Wilson, 2000), this scale is designed to assess the extent to which a person holds a pessimistic disposition. Importantly, however, items on the scale are worded such that participants could reasonably answer differently on a weekly basis (e.g., “if something can go wrong for me, it will”). Participants respond on a 5-point scale, ranging from 0 (Strongly Disagree) to 4 (Strongly Agree). The Life Orientation Test-Revised has shown good convergent and discriminant validity (Scheier et al., 1994), and internal consistency for the pessimism component of the scale in this study was good across all five time-points (all αs ≥ 0.82).

2.3. Analytic strategy

To characterize how levels of perceived stress and pessimism changed over the five-week study period and to examine how stress influenced levels of pessimism during this period, we examined the fit of three classes of structural equation models to these data. The three classes of structural equation models included a cross-lagged regression model, a latent growth curve model, and a latent difference score model. Because we only had one scale measuring perceived stress and one scale measuring pessimism, we could not model perceived stress or pessimism as latent variables within each time point.

2.3.1. Cross-lagged regression model

The first model we fit to the data was a cross-lagged regression model (Selig & Preacher, 2009). The cross-lagged regression model examines change over time as a function of rank ordering. Rather than examining the effects of overall changes within scores on a variable, this model examines whether a score on variable X at T - 1 predicts a relatively higher or lower score on variable Y at T. As such, this model is particularly well-suited for variables in which overall mean-level changes are unexpected but fluctuations in scores over time are expected. Consistent with prior research (Hawkley, Thisted, Masi, & Cacioppo, 2010; Kenny, 1975; Little, Preacher, Selig, & Card, 2007) and to allow better comparison with other models, we constrained the stability and cross-paths to be equal over time. This constraint is known as the assumption of stationarity and it statistically helps to alloy (but does not entirely alleviate) concerns of third variable influences (Kenny, 1975).

2.3.2. Latent growth curve model

The second model we fit to the data was a latent growth curve model (Ghisletta & McArdle, 2012; Selig & Preacher, 2009). This model presumes that a true score Y is dependent upon both a starting value and time. In a latent growth curve model, the changes modeled are changes in values, rather than fluctuations in rank order. This model thus differs from a cross-lagged regression model, which does not examine overall changes. The latent growth curve model is thus a better model to assess changes in the value of a person's score on a variable rather than their rank order. However, a multivariate linear growth curve model cannot examine temporal precedence, as the slope of changes estimated within this model is drawn from changes over the entire time course, and, as such, cannot predict changes in another variable with temporal precedence.

2.3.3. Latent difference score model

The third model we fit to the data was a latent difference score model (Ghisletta & McArdle, 2012; Selig & Preacher, 2009). Like a latent growth curve model, this model estimates overall change. However, this model has the advantage of estimating parameters of incremental change. The change at each time point is then equal to the overall rate of growth plus the preceding score. Thus, when two latent difference score models are estimated concurrently, this model can elucidate whether overall changes in one variable predict overall changes in another, but also whether there is temporal precedence—namely, whether a true score at a given time point (T) predicts changes in another true score at a subsequent time (T + 1). Consistent with prior research (Ghisletta & McArdle, 2012; Grimm, An, McArdle, Zonderman, & Resnick, 2009; Selig & Preacher, 2009), we constrained all stability and coupling parameters to be equal over time.

Like latent growth curve models, latent difference score models examine changes in values rather than changes in rank order. Thus, similar to latent growth curve models, changes in magnitude may be assessed, but the ability to assess these changes comes at the expense of the ability to assess changes in rank order of a variable (fluctuations). Nonetheless, latent difference score models have the advantage over latent growth curve models in that they can address temporal precedence due to fitting both constant change and proportional change parameters.

2.3.4. Data analysis

After examining whether data were missing completely at random, missing data were estimated using full-information maximum likelihood. Analyses were conducted in R, version 3.2.0, and structural equation models were fit using the package lavaan, version 0.5-20 (Rosseel, 2012).

3. Results

3.1. Preliminary analyses

Descriptive statistics and correlations for all of the observed variables are presented in Table 2.

3.1.1. Missingness analyses

Data were first examined to determine if missing data across the five time points were missing completely at random. Using Little's test for this purpose (Little, 1988), we found no evidence that data were not missing completely at random, χ²(86) = 84.91, p = 0.51. Exploratory analyses of missingness were also conducted for each measured variable to test if the data were missing at random. A series of logistic regressions using a person's score on a given variable (e.g., pessimism, stress) to predict their likelihood of missingness on that same variable at either a prior time or subsequent time were conducted and false discovery rate corrections were applied due to multiple tests. These analyses also indicated that a person's score at a given time point did not predict their likelihood of missing data at any time before or after that time point, ps > 0.91.

3.1.2. Longitudinal measurement invariance

Next, we fit a model to assess whether perceived stress and pessimism evidenced longitudinal measurement invariance. This tests whether the same construct is being measured across time and
whether differences are due to measurement issues. The model fit with weak invariance (CFI = 0.982) was not significantly worse than the model with configural invariance (CFI = 0.982). χ²(4) = 3.38, p = 0.496, and the model with strong invariance (CFI = 0.981) was not significantly worse than the model fit with weak invariance, χ²(4) = 6.95, p = 0.138. However, the model with invariances in means (indicating the means of the constructs did not change over time) was a significantly worse fit than the model with strong invariance, χ²(1) = 60.26, p < 0.001. Therefore, although there were differences in means in the constructs over time, longitudinal measurement invariance held for both perceived stress and pessimism in this study, indicating that changes in these constructs were not due to differences in measurement over time.

3.2. Primary analyses

3.2.1. Model fits

For the primary analyses, we fit a cross-lagged regression model, a bivariate latent growth curve model, and a bivariate latent difference score model to the data. Model fit statistics are provided in Table 3. Each model was tested both with the assumption of homogeneity of residual variance being held true and with that assumption being relaxed. All models fit the data significantly better with the assumption of homogeneity of residual variance being relaxed, ps < 0.001. As Table 3 illustrates, the best-fitting model was a bivariate latent growth curve model with the assumption of homogeneity of residual variance being relaxed. Because all other models had an [AIC difference] greater than four when comparing their AIC to the AIC of the bivariate latent growth curve model, the bivariate latent growth curve model was a considerably better fit than all of the other models (Burnham & Anderson, 2004). It was not possible to test the fit of this model against the other models using null hypothesis significance testing because these models were not nested. However, all models evidenced adequate fit. Because each model showed adequate fit and provides unique information about how stress relates to changes in pessimism over time, we describe each model below.

3.2.2. Cross-lagged regression modeling of stress and pessimism over time

Because the model with the assumption of homogeneity of residual variance relaxed fit significantly better than the model without that assumption relaxed, χ²(12) = 117.29, p < 0.001, we present the results of the relaxed model here. We hypothesized that perceived stress at a preceding time point would predict pessimism at a subsequent time, controlling for pessimism at the preceding time. As hypothesized, the cross-lagged parameter from perceived stress to pessimism was significant, β = 0.083, p = 0.012, indicating that greater perceived stress at a preceding time predicted greater pessimism at a subsequent time. Greater pessimism at a preceding time point also predicted greater perceived stress at a subsequent time, β = 0.124, p < 0.001. In addition, the autoregressive parameters for both perceived stress, β = 0.547, p < 0.001, and pessimism, β = 0.684, p < 0.001, were highly significant, indicating stability in these constructs over time. In sum, this model provides support for a bidirectional association between stress and pessimism, with greater perceived stress at a preceding time point predicting greater pessimism at a subsequent time, and vice versa, controlling for the other construct at a preceding time.

3.2.3. Bivariate latent growth curve modeling of stress and pessimism over time

Table 4 summarizes the means and variances for intercepts and slopes for all of the latent variables that were estimated in the best-fitting bivariate latent growth model and, in addition, presents the correlations between these variables. Because the model with the assumption of homogeneity of residual variance relaxed fit significantly better than the model without that assumption relaxed, χ²(12) = 51.02, p < 0.001, we present the results of the relaxed model here. Using this model, we first examined the role
that perceived stress played in shaping pessimism levels over the five-week time period. As hypothesized, the correlation between perceived stress and pessimism at baseline was significant, \(r = 0.64, p < 0.001 \). Although this baseline correlation does not address changes over time, it does provide evidence that perceived stress and pessimism are related. Of note, however, correlations of intercepts with slopes were all non-significant, \(|r| s < 0.17, ps > 0.19 \), indicating that baseline values of perceived stress or pessimism were not associated with accelerated or decelerated changes over time in either factor.

Statistically significant average changes (i.e., slopes) were observed for both perceived stress and pessimism, indicating that, on average, both perceived stress, \(\beta = -0.052, p < 0.001 \), and pessimism, \(\beta = -0.045, p < 0.001 \), decreased over the five-week study period. There was also significant variability in slopes, indicating that individual differences were evident in the extent to which participants exhibited changes in perceived stress, \(s^2 = 0.10, p < 0.001 \), and pessimism, \(s^2 = 0.12, p < 0.001 \), across this time period. Because changes over time differed between individuals, one or more factors likely moderated these changes in perceived stress or pessimism during the five-week study period.

To examine the main research question of how changes in perceived stress relate to changes in pessimism over time, we constrained the covariance between the slope of pessimism and the slope of perceived stress to zero, and estimated a regression path from the slope of perceived stress to the slope of pessimism. This regression path was significant and the association was statistically significant average changes over time, it does provide evidence that perceived stress and pessimism were related. Of note, however, correlations of intercepts with slopes were all non-significant, \(|r| s < 0.17, ps > 0.19 \), indicating that baseline values of perceived stress or pessimism were not associated with accelerated or decelerated changes over time in either factor. Unlike the bivariate latent growth curve model, however, according to this model, there were not statistically significant average changes in either pessimism (\(p = 0.446 \)) or perceived stress (\(p = 0.148 \)) over time. Similarly, the variances of these constant change parameters were not significant (\(ps > 0.352 \)), indicating a lack of variability in the constant changes over time. Of note, this lack of constant linear change differs from the pattern of results evident in Table 2, which clearly show a decrease over time in both constructs. In addition, contrary to expectations, changes in perceived stress were not significantly related to changes in pessimism over the entire five-week period in this model, \(r = 0.740, p = 0.581 \).

Finally, we examined proportional changes within this model. Unexpectedly, however, all of the stability and coupling coefficients were non-significant, \(ps > 0.312 \), indicating that proportional changes in either perceived stress or pessimism were not predicted by the same construct or the other construct at a preceding time.

4. Discussion

Although many early theories regarded personality as relatively fixed over time, it is now widely appreciated that personality traits can change. Presently, however, the factors that influence changes in personality are not well understood. We aimed to address this issue in the present study by using three classes of statistical models to examine how perceived stress and pessimism change over five weeks and, in addition, how changes in perceived stress are longitudinally associated with changes in pessimism. Model fit statistics indicated that the bivariate latent growth curve model was substantially preferable to the other models, and this model revealed a significant association between changes in perceived stress and changes in pessimism over time. To our knowledge, these data are the first to show that stress is associated with changes in pessimism on a weekly basis.

One notable aspect of these findings involves the differences observed between models. Namely, despite the conceptual agreement between the cross-lagged regression model and the bivariate latent growth curve model, the results of the bivariate latent difference score model differed in several important ways from the other models. First, the latent difference score model showed better fit relative to the cross-lagged regression model but also showed poorer fit than the latent growth model. Second, the bivariate latent difference score model did not estimate any significant linear change in either

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>Variance</th>
<th>(x_0)</th>
<th>(y_0)</th>
<th>(x_s)</th>
<th>(y_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_0)</td>
<td>2.59**</td>
<td>0.500***</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(y_0)</td>
<td>2.24</td>
<td>0.215</td>
<td></td>
<td>0.639**</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(x_s)</td>
<td>-0.052**</td>
<td>0.010***</td>
<td>-0.113</td>
<td>-0.006</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(y_s)</td>
<td>-0.045**</td>
<td>0.012***</td>
<td>-0.014</td>
<td>-0.105</td>
<td>0.415**</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: \(x = \) perceived stress; \(y = \) pessimism; subscript 0 = intercept; subscript \(s = \) slope.

* \(p < 0.05 \).
** \(p < 0.001 \).

1 We also examined whether age moderated any of the results, but it did not. Namely, age did not moderate the association between the rank-order of stress at a preceding time and the rank-order of pessimism at a subsequent time in the cross-lagged regression model, \(p = 0.127 \). Similarly, age did not moderate the association between changes in the value of stress and changes in the value of pessimism in the latent growth curve model, \(p = 0.846 \). Finally, in the latent difference score model, age did not moderate the association between overall changes in stress and overall changes in pessimism, \(p = 0.426 \), or the association between the values of stress at a preceding time point and the values of pessimism at a subsequent time point, \(p = 0.181 \).
Several limitations of this research should be noted. First, we assessed experiences of stress using a well-validated, self-report measure of subjective stress. Although we believe this strategy represents a valuable first-step for addressing questions on this topic, interview-based systems for assessing life stress have important advantages over self-report instruments and should thus be used in future research on this topic (Monroe, 2008; Monroe & Slavich, 2016). Second, we assessed only one aspect of personality (i.e., pessimism) and it is possible that stress may influence other higher-order personality traits as well, such as conscientiousness and extraversion. Additional research is thus needed to examine the effects of stress on other personality traits. Third, research on post-traumatic growth has shown that major life stressors may lead to personal growth, potentially by influencing the development of positive personality traits (Woodward & Joseph, 2003). Therefore, additional research is warranted to identify when significant life stressors lead to positive versus negative changes in personality and health. Fourth, although we tested associations between stress and pessimism over five consecutive weeks, as with all similar studies, the present data are correlational and do not indicate causation. Fifth, the temporal precedence of changes in stress and pessimism needs to be examined in future research. Although the cross-lagged regression model fit to these data indicated significant temporal effects, it had relatively poorer fit compared to the bivariate growth model. In addition, the analysis regressing pessimism on perceived stress in the bivariate latent growth curve model simply redistributes the variance in the correlation between changes in stress and changes in pessimism into a regression pathway and, consequently, this analysis is no more informative than the correlation between slopes. Indeed, reversing the direction of the regression slope produces a model with an identical fit, as does allowing these changes to covary rather than placing them in a regression. We reported the regression coefficient as such because we had an a priori directional hypothesis, but ultimately, future research that manipulates stress (e.g., using a laboratory-based stress task) and examines the effects that such manipulations have on pessimism is needed to evaluate questions about cause and effect.

Finally, the present data cannot rule out the possibility that levels of perceived stress were related to changes in levels of pessimism for reasons not involving the effects of stress. For example, it is possible that perceived stress at one time point is inversely related to psychosocial or other kinds of resources, and that experiencing a lack of these resources is what changes pessimism (rather than the experience of stress per se). Future research could address this question by experimentally manipulating stress over time (e.g., by texting participants for one or more weeks and asking them to think about a recent stressful event or difficulty for a few minutes) and then examining the effects that this manipulation has on pessimism. If such studies implicate stress as a primary factor driving increases in pessimism, then additional research should examine the specific mechanisms underlying such effects. For example, stressed individuals may engage in styles of coping that exhaust their psychological resources, thereby leading to pessimism. Or, stress may induce neural or biological changes that promote pessimism, such as increased neural sensitivity to threat or inflammation (Slavich, 2015; Slavich, Way, Eisenberger, & Taylor, 2010). Ultimately, studies examining these and other possibilities are needed to elucidate how stress might lead to changes in pessimism over time.

In conclusion, the present data are the first to show that weekly changes in perceptions of stress are associated with weekly changes in pessimism over time. Although the model that best fit these data cannot address cause or temporal precedence, these findings are the first to show a relation over time between changes in perceived stress and personality. Additional research is needed.
to determine the temporal ordering of these effects, to examine the effect that stress has on other personality characteristics, to elucidate psychological and biological mechanisms underlying these effects, and to determine the relevance of these stress-personality dynamics for human health.

Conflict of interest
The authors declare that they have no conflicts of interest with respect to their authorship or the publication of this article.

Funding
This research was supported by a National Institutes of Health grant K08 MH103443 and a Society in Science—Branco Weiss Fellowship to George M. Slavin.

References

