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Abstract 

In this narrative review, we examine biological processes linking psychological stress and cognition, with a focus 
on how psychological stress can activate multiple neurobiological mechanisms that drive cognitive decline 
and behavioral change. First, we describe the general neurobiology of the stress response to define neurocognitive 
stress reactivity. Second, we review aspects of epigenetic regulation, synaptic transmission, sex hormones, photoperi-
odic plasticity, and psychoneuroimmunological processes that can contribute to cognitive decline and neuropsychi-
atric conditions. Third, we explain mechanistic processes linking the stress response and neuropathology. Fourth, we 
discuss molecular nuances such as an interplay between kinases and proteins, as well as differential role of sex hor-
mones, that can increase vulnerability to cognitive and emotional dysregulation following stress. Finally, we explicate 
several testable hypotheses for stress, neurocognitive, and neuropsychiatric research. Together, this work highlights 
how stress processes alter neurophysiology on multiple levels to increase individuals’ risk for neurocognitive and psy-
chiatric disorders, and points toward novel therapeutic targets for mitigating these effects. The resulting models can 
thus advance dementia and mental health research, and translational neuroscience, with an eye toward clinical appli-
cation in cognitive and behavioral neurology, and psychiatry.

Keywords Anxiety, Cognition, Depression, Epigenetics, Memory, Neurodegeneration, Kinase, Psychological stress, 
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Background
Stress is a physiological response that engages the hypo-
thalamic–pituitary–adrenal (HPA) axis and locus coer-
uleus-norepinephrine (LC-NE) system to address salient 
stimuli (i.e., stressors) that are either potential or actual 
threats to our physical and/or psychological well-being. 
Psychological stressors trigger negative effects on men-
tal health known as psychological stress [e.g., 1, 2]. The 
magnitude and prevalence of psychological stress effects 
are well documented. For example, in the United States, 
work-related stress has an economic impact of up to 
$190 billion annually [3, 4], and the results of the 2022 
survey performed for the American Psychological Asso-
ciation showed that stress is altering all aspects of life [5]. 
Accordingly, the World Health Organization highlighted 
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the global importance of interventions for stress manage-
ment and well-being programmes in its Comprehensive 
Mental Health Action Plan 2013–2030 [6].

Substantial research indicates that psychological stress, 
which can involve extreme and/or chronic experiences of 
aversive feelings, can evoke neural responses associated 
with pain perception [e.g., 7, 8], mentalizing, psychiatric 
disorders, and cognitive deteriorations [e.g., 1, 2, 9, 10]. 
Stress is also a risk factor for both acute and progressive 
cerebral pathologies such as stroke and neurodegenera-
tive disease [e.g., 9, 11–14], which reciprocal interplay to 
accelerate cognitive manifestation of dementia [e.g., 15, 
16]. Neurodegenerative diseases and psychiatric disor-
ders are often highly comorbid [e.g., 17–19].

To better understand stress-induced neural dynam-
ics implicated in cognitive impairment, as well as the 
etiopathogenetic mechanisms that can be shared by 
stress-related neurocognitive diseases and psychiatric 
disorders, we present a comprehensive narrative review 
of their interconnected cellular processes. The conceptual 
framework for this review is centered on the idea that 
psychological stress can alter the brain on multiple lev-
els (e.g., epigenetics, neurotransmitters) that are relevant 
for affect, behavior, and cognition. First, we briefly revisit 
the general neurobiology of the stress response to define 
neurocognitive stress reactivity and the mechanisms of 
habituation and sensitization. Next, we review the main 
mechanisms shared by stress responses, cognitive pro-
cessing, and neuropsychiatric alteration on the level of 
epigenetic regulation, synaptic transmission, sex hor-
mone co-signalling, photoperiodic plasticity, and psycho-
neuroimmunology. The review is structured as an array 
of the sections on each level, as we describe how stress 
can contribute to cognitive decline and behavioral altera-
tion. We show mechanistic parallelisms between stress 
response and neuropathology with the aim of propos-
ing new experimental directions and specific scientific 
hypotheses that should be tested. Ultimately, under-
standing links between stress, cognitive impairment, and 
psychiatric disorders will enable researchers to generate 
testable hypotheses that can in turn lead to novel insights 
and potentially to new therapeutic targets.

Neuropsychobiology of the stress responses
Summary of the concepts: Stress is a reaction to a stressor 
in attempt to protect and maintain physiological stabil-
ity through the process of allostasis that helps adaptation. 
However, exposure to chronic or severe stress can cause 
habituation and sensitization associated with harmful 
effects of altered allostasis.
Takeaway: Stress responses are functions of allostatic sta-
tus and cognitive appraisal.

The concept of allostasis
Exposure to psychological stressors evokes neural 
responses directed to protect and maintain physiologi-
cal stability (i.e., homeostasis) through a process known 
as allostasis [e.g., 20–22]. Allostasis is determined by the 
synergetic activities of the HPA axis (“neuroendocrine 
limb”) and the LC-NE system (“cognitive limb”) [e.g., 1, 
9, 23–26]. Allostasis is initiated with the release of corti-
cotropin-releasing hormone (CRH) from the hypothala-
mus and urocortin from the brainstem, which together 
form the corticotropin-releasing factor (CRF) family in 
humans. CRH release stimulates secretion of adreno-
corticotropic hormone (ACTH) from the adenohypo-
physis, which, in turn, stimulates the adrenal cortex to 
produce cortisol as a stress hormone [e.g., 27–30]. The 
cortisol response to stress follows a triphasic pattern dur-
ing a successful adaptation to stressors [e.g., 21, 22, 31]. 
First, there is an alarm reaction, then resistance, followed 
by resolution of the cortisol response due to negative 
feedback-inhibition over the HPA activity that results in 
decreased sensitivity to ACTH, and, in turn, suppression 
of cortisol production. This physiological pattern of cor-
tisol response is moderated by sensitivity of the glucocor-
ticoid receptors (GR).

However, when stress-induced neuroendocrine 
responses are ongoing or elevated, allostatic load can 
turn into allostatic overload to which there is a cost of 
poor health outcomes, including psychiatric disorders 
[e.g., 32]. The allostatic load can result from exposure to 
a chronic or repeated stressor (e.g., interpersonal stress), 
cumulative challenges (e.g., work-related stress and low 
socioeconomic status) or prior adverse experiences (e.g., 
maltreatment in childhood). That is why in patients, the 
same clinical diagnosis does not imply the same under-
lying health condition. Assessments of allostatic load, 
such as the evaluation of biopsychosocial determinants 
of health, may help with advancing personalised clinical 
interventions [e.g., 33].

Severe or chronic stress can result in allostatic failure 
defined as a stress response that surpasses the essential 
needs and, in turn, results in harmful effects (i.e., mal-
adaptation) [e.g., 9, 10, 21, 24, 25, 31–35]. Importantly, 
stress severity—and, hence, the level of adaptation—is 
principally linked to a person’s cognitive appraisal of the 
situation (i.e., how the stressor is perceived; for details, 
please see our recent work [1]). This means that neurobi-
ological responses to a psychological stressor are largely 
modulated by neuropsychological feedback, with an indi-
vidual’s cognitive and behavioral changes in a response 
to a psychological stressor being called neurocognitive 
stress reactivity [1].

The neurocognitive responses play a crucial role 
in early-life stress/adverse childhood experiences. 
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Specifically, the neurodevelopmental aspects increase 
brain vulnerability to cognitive and emotional dysregula-
tion, which is a risk for childhood stress psychopathology 
(for details, see [2]). The neurocognitive impact of stress 
reactivity is also prominent in various neuropsychiatric 
conditions. For example, when coping with stress, indi-
viduals with borderline personality disorder or post-trau-
matic stress disorder (PTSD) can present with reduced 
pain perception related to dissociation which, in turn, 
can be linked to self-harm and suicide attempts [e.g., 
36–38; see also 39]. Accordingly, the assessment of soma-
tosensory function can serve as a clinical intervention 
tool for screening psychologically vulnerable populations 
whose stress-coping mechanisms may increase their risk 
for suicide attempts [e.g., 40, 41].

Habituation and sensitization in response to stress
At the neuroendocrine level, maladaptive stress 
responses depend in part on an individual’s sensitivity 
to ACTH and the type of stressor experienced. Specifi-
cally, the stressor can be novel (i.e., acute exposure to a 
new aversive stimulus), homotypic (i.e., chronic/repeated 
exposure to the same/similar aversive stimuli, e.g., 
chronic bullying), or heterotypic (i.e., exposure to differ-
ent aversive stimuli, e.g., financial or psychosocial chal-
lenges following caregiver burden). Sensitivity to ACTH 
can be: (a) increased for a novel stressor, (b) initially 
increased and then decreased during chronic exposure 
to a homotypic stressor, or (c) diminished in response to 
a homotypic stressor [42–44]. In addition, exposure to 
homotypic stressors can lead to habituation of the HPA 
axis response (as can be seen in decreased glucocorticoid 
response) and enhance post-stress recovery of the HPA 
axis (i.e., post-stress return to baseline). Yet, prior expo-
sure to homotypic stressors can cause sensitization of the 
HPA axis response (as can be seen in increased glucocor-
ticoid response) and worsen the recovery of the HPA axis 
following exposure to a novel stressor [e.g., 34, 45–47]. 
The outcomes of maladaptive stress-induced hyperactiv-
ity of the HPA axis seen in prolonged hypercortisolemia 
and/or altered GR function are related to depression and 
anxiety [e.g., 9, 48, 49]. Additionally, behavioral sensiti-
zation appears to persist longer than the HPA axis sen-
sitization and is often a latent phenomenon revealed by 
a novel stressor [e.g., 47, also see 50]. In other words, 
stress adaptation declines in the context of chronic stress, 
which reduces a person’s ability to recover after a novel 
stressor exposure and can increase their susceptibility to 
mood disorders and other stress-related health problems 
[e.g., 1, 2].

At the same time, stress resilience is associated with 
CRF-mediated regulation of cognitive and behavio-
ral activity [9, 21, 27–29, 31, 44, 51–55]. Amygdalar 

CRF signalling has anxiogenic-like effects [e.g., 9, 29] 
and mediates defensive responses such as increased 
vigilance, ability to discriminate salient stimuli, and 
active escape [e.g., 56]. Research has shown that stress-
induced increases in the expression of amygdalar CRF-1 
receptors are associated with deficient hippocampal-
dependent memory and learning, as demonstrated in the 
impaired visual discrimination task [e.g., 29, 54, 55; see 
also 23], whereas hippocampal CRF signalling can pro-
mote synaptic remodelling that is potentially support-
ive of memory consolidation in acute stress [e.g., 57]. To 
complicate matters, chronic stress also promotes con-
nectivity between the amygdala and striatum. The con-
sequences can be seen in diminished cognitive flexibility 
caused by shifts from hippocampus-dependent memory 
to striatum-dependent memory [e.g., 58–62] and behav-
ioral maladaptation due to amygdalar CRF-mediated 
excitation [e.g., 9, 29, 43, 55]. In addition, upon involve-
ment of the nucleus accumbens (ventral striatum) that is 
associated with reward-related behavior, reinstatement 
of drug addiction via glutamate synaptic plasticity may 
occur [63]. This effect can be explained by the fact that 
in the nucleus accumbens, β-adrenoreceptors promote 
memory consolidation of positive and negative arousing 
experiences [64, 65]. It is thus not surprising that CRF-1 
receptor antagonists are being considered as a promising 
pharmacotherapy for depression, anxiety, cognitive/neu-
rodegenerative, and stress disorders [e.g., 66–68; see also 
69–71].

Effects of stress on neuronal mechanisms shared 
with cognitive and emotional processing
Transcriptional and epigenetic effects, and interindividual 
genetic variation
Summary of the concepts: Psychological stress can induce 
various epigenetic effects that are associated with the 
activation of GR. The effects implicated in the pathogen-
esis of neurocognitive and psychiatric disorders. At the 
same time, polymorphism in genes associated with sero-
toninergic signalling has been linked to depression sus-
ceptibility, cortisol response to stressors, and greater risk 
for developing mild cognitive impairment.
Takeaway: Examining the impact of gene × environment 
interactions is superior to investigating interindividual 
genetic variation by itself.

Epigenetic regulation: central players
Stress-induced surge in corticosteroid signalling can fur-
ther initiate epigenetic changes (Figs.  1, 2), which have 
an influence on cognitive functions, behavior, and mood 
[e.g., 23, 72, 73; see also 74, 75]. The influence is facili-
tated by the GRs and mineralocorticoid receptors (MRs) 
cerebral distribution. GRs are highly expressed in the 
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hippocampus and prefrontal cortex (PFC), which relates 
to executive functioning [e.g., 21, 28, 51]. Glucocorti-
coid secretion exhibits circadian and ultradian patterns 
with levels peaking in the morning and are essential for 
negative feedback after acute psychological stress [e.g., 
76–81]. Whereas GRs assist information encoding (i.e., 
memorization), eradication of inadequate behavioral 
responses, and stress recovery, MRs, which are mainly 
engaged in the evening, facilitate processing of sensory 
information, analysis of environmental information, and 
execution of proper behavioral responses [28, 35, 48, 72, 
82, 83].

Epigenetic regulation: factors underlying stress resilience
GRs depend on chaperones, especially heat shock pro-
teins (Hsp) 70 and 90 [e.g., 84, 85]. Chaperones are 
multimeric complexes that control protein qualities 
(e.g., folding/unfolding, see Fig.  3) and protect cells by 
identifying emerging polypeptides from irreversible 

aggregation in the context of stress [e.g., 86, 87]. The 
chaperones dysregulated activity can result in misfolded 
and aggregated proteins like tau deposition, a hallmark 
of several neurodegenerative diseases [e.g., 86, 88–90]. 
Stress can affect the mechanisms of protein aggregation/
clearance, which relates to proteotoxicity that is critical 
in the development and/or progression of neurodegen-
eration, including Alzheimer’s disease [e.g., 91–93].

Transcriptional and regulatory effects
The role of GRs in memory relates to their translocation 
ability in neurons. Specifically, GRs are dynamic molecu-
lar structures located mainly in the neural cytoplasm. 
GRs have the capacity to bind all steroid hormones with 
a ligand-binding domain that has 12 helices in the form 
of a “sandwich” [e.g., 94, 95]. Upon cortisol binding, acti-
vated GRs release Hsp90 that eases GRs’ nuclear trans-
location, where it acts as a DNA-binding transcription 
factor; GRs’ binding to DNA glucocorticoid response 

Fig. 1 Epigenetic Mechanisms of Memory Alteration Following Acute Psychological Stress. Simplified and schematic model of indirect epigenetic 
mechanisms for fast (< 1 h) nongenomic effects induced by membrane-associate receptors during acute stress. Increased levels of NE bind 
to BR (namely β2) and rapidly increase  Ca2+ influx and cAMP and  Ca2+/MK activation, that triggers PKA to modulate synaptic activity (see Fig. 4) 
and phosphorylate CREB, which activates transcription and gene expression linked to neuronal plasticity, spatial memory, and long-term 
memory formation. This mechanism supports fear conditioning/learning, whereas severe stress can decrease initially activated  Ca2+/MK, which 
relates to poor memory. Estradiol can activate ERs (mostly type β) linked to fear learning/conditioning via ERK/MAPK pathways which affect 
post-translational gene regulation via histone acetylation. In the amygdala, independently of sex-hormone levels, short photoperiod reduces 
melatonin and thus increases estradiol-induced phosphorylation of CREB (males) and ERK aka MAPK (females) linked to aggression. In acute 
stress, high estradiol levels in proestrus are linked to the prefrontal cortex memory deficit and altered glutamate signalling, potentially due 
to hyperactivated  Ca2+/MK.  Ca2+/MK,  Ca2+/Calmodulin dependent kinases IIα;  CH3CO, acetylation; CREB, cAMP response element-binding protein; 
ERK, extracellular regulated kinase, aka mitogen-activated protein kinase (MAPK); ER, estrogen receptors; GR, glucocorticoid receptor; H, histone; NE, 
norepinephrine;  PO3

2, phosphorylation; PKA, protein kinase A
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elements activates transcription—that is, transactivation 
effect seen in the increased rate of gene expression [e.g., 
35, 48, 72, 84, 86, 87, 94, 96–100; see Fig. 3]. GRs’ nuclear 
translocation can also induce a transrepression, which 
is an epigenetic repression of other transcription factors 
including NF-κB and AP-1 related to the proinflamma-
tory immune response [95, 101]. In addition, nuclear GRs 
can cause indirect genomic effect via cAMP-dependant 
protein kinase A that correlates to learning and memory 
function [e.g., 102; see Figs. 4, 5, 6].

Further, stress-activated GRs can induceDNA methyla-
tion via mitogen-activated protein kinase (MAPK), also 
known as extracellular signal-regulated kinases (ERK), 
that are required for fear memory and mediate stress-
related behavioral effects of GRs [e.g., 103, 104; see also 
105–108; Figs.  1–6]. The DNA methylation, which is a 
chromatin re-modelling by the addition of methyl groups 
 (CH3) to cytosine nucleotide during transactivation (see 
Figs.  1, 2), serves as a “molecular bridge” between the 
external (i.e., environment) and internal (i.e., cellular) 
world [e.g., 109–114]. It is regulated by de novo  meth-
yltransferases that are crucial for hippocampal memory 
in contextual fear conditioning, late-phase long-term 
potentiation, and spatial memory [e.g., 115].

Another important mechanism that can be engaged 
in stress-associated neuropsychiatric outcomes belongs 
to the nucleosome modifications. A nucleosome is a 
“bead” segment of DNA wrapped around histones, which 
are octamers of duplicated H2A/H2B dimer and H3/
H4 tetramer proteins. Histones display a globular struc-
ture with protruding “tails” from the nucleosome—N-
terminal domains, exclusively in H2A and H2B extra 
C-terminal domains (Figs.  1, 2). The nucleosome has 
dynamic phases of “breathing” when it unwraps and 
rebinds DNA, and thus transiently exposes DNA sites 
[e.g., 116] so that genes can be regulated post-transla-
tionally via (but not limited to) methylation. The “breath-
ing” has a dual role: it condensates DNA to deactivate 
transcription, and relaxes DNA to activate transcription 
[e.g., 117, 118]. This process modifies histone tails with 
“postal codes” (i.e., molecular tags) to be delivered and 
recognized by “reader” proteins involved in chromatin 
re-modeling [e.g., 115, 118]. The molecular tagging of 
the histone tails is an epigenetic mechanism of learn-
ing and memory, which is regulated by “eraser” proteins 
that remove established histone-tail modifications [119]. 
However, stress can block this process via histone acety-
lation mechanisms and, in turn, lead to depressive- and 

Fig. 2 Epigenetic Mechanisms of Memory Alteration Following Chronic Psychological Stress. Simplified and schematic model of epigenetic 
mechanisms for slow (> 1 h) genomic effects induced by nuclear receptors. During chronic stress, increased nuclear levels of GRs-cortisol complex 
promote DNA methylation. Methylated DNA sites prevent CREB binding, and vice versa (depicted in double arrows as “synergetic inhibition”). 
At the same time, CREB activity largely correlates to histone acetylation which is essential for memory consolidation.  CH3, methyl group;  CH3CO, 
acetylation; CREB, cAMP response element-binding protein; GR, glucocorticoid receptor; GRE, glucocorticoid response elements; H, histone;  PO3

2, 
phosphorylation
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anxiety-like behavior, visceral hypersensitivity, and cog-
nitive deterioration [e.g., 120–123]. The reason is that 
histone acetylation is a rapid process of histone modifica-
tion. It is regulated by histone acetyltransferases, which 
are both the histone “postal codes writers” and “postal 
codes readers” balanced by histone deacetylase activity 
that may reverse histone acetylation [e.g., 119]. Histone 
acetyltransferases contribute to the transcriptional con-
trol during memory formation, including contextual fear 
conditioning, novel object recognition, spatial memory, 
and long-term potentiation [e.g., 115, 124, 125]. Addi-
tionally, histone acetylation and epigenetic mechanisms 
of de novo DNA methylation are synergetic. For instance, 
histone deacetylase inhibitor infusion via transcription 
factor (NGFI-A) binding to the GR promoter reverses 
DNA methylation, GR expression, and HPA reactions 
[e.g., 114, 126]. Furthermore, inhibition of DNA meth-
yltransferase blocks promoted histone H3 acetylation in 
contextual fear conditioning [e.g., 115, 127]. It is thus not 

surprising that histone modifications are implicated in 
the pathogenesis of cognitive dysfunction, neuropsychi-
atric conditions, and neurodegenerative disorders such as 
PTSD and Alzheimer’s disease [e.g., 128–130]. Accord-
ingly, inhibitors of histone deacetylase show neuropro-
tective properties and show potential as an intervention 
in the treatment of neurocognitive disorders and PTSD 
[e.g., 119, 131, 132].

Stress can also alter methylation of hippocampal brain-
derived neurotrophic factor (BDNF), which plays an 
important role in adaptation to chronic stress by promot-
ing neuroplasticity [e.g., 133, 134]. Prolonged cortisol 
hypersecretion in chronic stress increases methylation 
of the hippocampal BDNF promoter, which is positively 
correlated to memory consolidation in contextual fear 
learning [e.g., 111, 135; also see 136–139]. Chronic 
stress also supresses BDNF expression that results in 
subsequent hippocampal atrophy and deficient acquisi-
tion/consolidation of verbal declarative memory [e.g., 

Fig. 3 Epigenetic Mechanisms Underlying Stress Resilience to Neuropsychiatric Disorders. Stress increases levels of circulating cortisol that easily 
passes the cellular membrane. In the cellular plasma, [1] GR forms a complex with chaperones [2] Hsp70 (that partially unfolds and inactivates 
GR) and [3] Hsp90 (that facilitates GR maturation) [84, 87]. [4] Binding with co-chaperone FKBP51 (encoded by gene fkbp5) inhibits GR capacity 
for nuclear transactivation/signalling and detaches Hsp70 [35, 48, 99, 100]. [5] Encoded by gene fkbp4, co-chaperone FKBP52 competes with FKBP51 
and its replacement increases affinity of the GR-Hsp90 complex to bind cortisol [84, 97]. [6] When cortisol binds, chaperone complex releases 
and thus GR and HSF1 translocate to the nucleus to initiate transcription linked to [7] memory formation [84, 87, 95, 101] and [8] gene expression 
for chaperones and co-chaperones that promote GR activation in stress-response [86, 94]. [9] In an ultra-short feedback loop, it also promotes 
gene fkbp5, which has close proximity to GRE. Polymorphism of fkbp5 is associated with interindividual differences in stress reactivity. In addition, 
fkbp5 expression increases with age due to decreased DNA methylation. This simplified model does not depict all protein/regulators involved 
in chaperone machinery and signalling pathways. CREB, cAMP response element-binding protein; GR, glucocorticoid receptor; GRE, glucocorticoid 
response elements; H, histone; HSF, heat shock factor 1
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140–143]. Reductions in hippocampal BDNF are linked 
to desensitization of GRs, higher stress vulnerability, 
and predisposition to psychiatric comorbidity in stress 
[e.g., 133, 144–146]. The mechanism involves a down-
regulation of peroxisome proliferator-activated receptor 
δ, which is related to significantly reduced neurogenesis 
and behaviors that are consistent with depression [147].

At the same time, stress-related changes in the epig-
enome can be reversed. For instance, glutamate recep-
tor (NMDA) blockade inhibits BDNF  expression and 
prevents its methylation, which in turn supresses altered 
memory formation [e.g., 111]. Moreover, the induction 

of gene-specific demethylation (e.g., by genetic removal 
of a regulator of active DNA demethylation or with DNA 
methyltransferase inhibitors) can improve late-phase 
hippocampal potentiation, spatial memory, and con-
textual fear memory consolidation [e.g., 115; see also 
10]. At least one systematic review and meta-analysis 
revealed that patients with PTSD have elevated serum 
BDNF levels compared to healthy individuals [148]. 
Despite equivocation in the literature, some clinical stud-
ies have related the BDNF Val66Met polymorphism to 
modulation of stress sensitivity [e.g., 149]. For instance, 
the  BDNF Val66Met polymorphism has been shown to 

Fig. 4 Psychological Stress: Noradrenergic Signalling and Synaptic Plasticity. A crucial part in memory formation belongs to synaptic activity/
plasticity, particularly in the hippocampus. First, in the axon of a neuron, [1] action potentiation converts electrical stimuli into a chemical message 
[glutamate] to pass it through the synapse to the dendrite of another neuron. At the dendritic spine, ionotropic channels [2a] NMDA- and [2b] 
AMPA-type glutamate receptors “receive the message”. [3a] NMDA receptors facilitate  Ca2+ entry that triggers  Ca2+/Calmodulin dependent kinases 
Iiα, which results in synaptic incorporation of AMPA receptors—a necessary mechanism for long-term potentiation as a part of memory formation. 
[3b] Activated AMPA receptors stimulate ERK (aka MAPK). Additionally, in the dorsal hippocampus, activated estrogen receptors can stimulate 
GluA1 subunit via ERK linked to enhanced neurocognition in females but not in males. During acute stress (depicted by black double arrows), due 
to emotional arousal (e.g., fear), released norepinephrine binds to β2-adrenoreceptors (G-protein-coupled receptor) and activates protein Gαs; 
that stimulates adenylate cyclase and cAMP synthesis, which accumulation triggers protein kinase A and ERK/MAPK (depicted by yellow ovals, see 
Fig. 1 for more details). Protein kinase A activates AMPA receptor by its subunit GluA1 phosphorylation that results in the AMPA receptor’s trafficking 
and synaptic incorporation. As well, protein kinase A activates  Ca2+/Calmodulin dependent kinases IIα directly and via [4] stimulation of L-type 
 Ca2+ channel that increases  Ca2+ influx and activates the kinases further (white arrows depict  Ca2+ signalling). During severe stress, excessive 
norepinephrine release can also [5] activate α1-adrenoreceptors and trigger protein kinase C signalling that activates AMPA receptors. Stathmin 
is a microtubule-stabilizing and ERK-regulated protein that displays cytoprotective function. Specifically, dynamical changes in the microtubule 
stability are vital for synaptic plasticity and long-term potentiation. Synaptic input, such as during learning/facing a threat, hyperactivates stathmin, 
which decreases microtubule stability (depolymerization within first hour). SNARE protein complexes interact with serotonin signalling regulated 
by fkbp5 gene (see Fig. 3), that potentially can determine an individual’s susceptibility to stress and depression. cAMP, cyclic AMP; CREB, cAMP 
response element-binding protein; ERK, extracellular regulated kinase, aka mitogen-activated protein kinase (MAPK); GR, glucocorticoid receptors; 
GRE, glucocorticoid response elements;  PO3

2, phosphorylation
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moderate the relation between PTSD and fear extinction 
learning [150] and aversive memory bias in women with 
PTSD but not in psychiatrically healthy women [151]. At 
the same time, PTSD and dementia have been shown to 
be bidirectionally linked [e.g., 152], and that PTSD is a 
potentially modifiable risk factor for dementia [153; see 
also 69].

Interindividual genetic variations
Although stress can initiate epigenetic changes that 
modulate susceptibility to neuropsychiatric condi-
tions, a glucocorticoid-dependent encoding gene fkbp5 
plays a major role in stress resilience [e.g., 84, 96, 154]. 
The fkbp5 gene is in close proximity to a glucocorticoid-
responsive element [96, 155, 156]. Moreover, the fkbp5 
polymorphism correlates with activation of GRs and can 
thus increase post-traumatic stress susceptibility to psy-
chiatric disorders [99, 101, 157]. The fkbp5 gene, which 
encodes co-chaperone FKBP51 and regulates serotonin-
ergic signalling [e.g., 158], is associated with depression 
susceptibility and reduced cortisol response to stress 
due to GRs hypofunction. For example, fkbp5 rs1360780 

T‐allele carrier status is related to GR resistance seen in 
reduced concentrations of plasma cortisol and ACTH 
following dexamethasone administration in depressed 
patients compared to healthy controls [159]. In healthy 
volunteers, the fkbp5 polymorphism modulates recovery 
to the Trier Social Stress Test (TSST). Specifically, the 
fkbp5 variants (rs1360780, rs3800737, and rs4713916) 
were related to less cortisol recovery and higher anxi-
ety after psychosocial stress, whereas the GR polymor-
phism (Bcl1 but not N363S) was related to anticipatory 
cortisol levels [160]. Additionally, there is a male-specific 
effect in fkbp5 polymorphism (rs3800737) that is linked 
to the cortisol responses to TSST (i.e., peak response 
and response area under the curve), whereas variants 
rs7209436 and rs110402 in CRH receptor gene (CRHR1) 
are associated with a trait anxiety × baseline cortisol 
interaction [161].

The polymorphism in fkbp5 has also been shown to 
predict individual differences in stress-related memory 
deficits [e.g., 162, 163] and functional activity/connectiv-
ity of the amygdala related to emotional (anxiety/depres-
sion) responses to threat [e.g., 164–168]. Its interaction 

Fig. 5 Acute Psychological Stress: The Role of Cortisol and Kinases in Memory Formation. During acute stress (depicted by mustard/dark 
yellow arrows), rapidly increased levels of cortisol can activate GRs that increase surface expression of NMDA and AMPA receptors (nongenomic 
memory effect). Upregulated  Ca2+/Calmodulin dependent kinases IIα pathway activates CREB mechanism (fast indirect epigenetic effect related 
to neuropsychiatric outcomes such as anxiety and increased risk for post-traumatic stress disorder). At the same time, activated ERK/MAPK inhibits 
stathmin via phosphorylation; that stabilizes microtubules and, in turn, activates incorporation of the GluA2 subunit (AMPA receptor) to synaptic 
sites, which is necessary for long-term memory formation yet supports fear conditioning/learning. See Fig. 4 for the path [1]–[4]. cAMP, cyclic AMP; 
CREB, cAMP response element-binding protein; ERK, extracellular regulated kinase, aka mitogen-activated protein kinase (MAPK); GR, glucocorticoid 
receptors; GRE, glucocorticoid response elements;  PO3

2, phosphorylation
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with early life stress is also predictive of reduced con-
nectivity between the amygdala and parahippocampal 
gyrus, caudate, and frontal gyri [169; see also 170]. In 
healthy youth, for example, fkbp5 genotypes (rs7748266, 
rs1360780, rs9296158, rs3800373, rs9470080 and 
rs9394309) predicted relatively increased threat-related 
dorsal amygdala reactivity in the context of higher self-
reported emotional neglect [171]. Genetic variants in 
fkbp5, as well as CRHR1 and NR3C2, have been also 
found to be associated with higher HPA activity, and 
their interaction with early life stress is associated with 
right amygdala reactivity to threat and anxious arousal 
[172]. In adults exposed to high levels of childhood 
trauma, rs3777747, rs4713902, and rs9470080 (main 
effects) and rs3800373, rs9296158, and rs1360780 (inter-
active effects with Childhood Trauma Questionnaire 
score) were related to a greater risk of a lifetime suicidal 
behavior [173].

There are interindividual and sex-specific peculiari-
ties of the stress-response related to FKBP51 functions. 
Specifically, FKBP51 interacts with sex hormones (pro-
gesterone and androgen) receptors that modifies their 

sensitivity. As well, FKBP51 competes with FKBP52 
regulation of memory-associated synaptic plasticity and 
transmembrane calcium channels [e.g., 84, 96]. In healthy 
undergraduate students, exposure to a socially evalu-
ative cold pressor test directly prior to verbal learning 
reduced immediate verbal recall in fkbp5 risk allele car-
riers (rs1360780, rs3800373 and rs929615). In contrast, 
the stress task enhanced 24-h later recall and recogni-
tion memory in non-carriers of the risk alleles [163]. In 
young healthy adults, fkbp5 A-allele carriers had less pro-
nounced autonomic responses to stress and poor work-
ing memory performance on the Stroop color-word task 
(the results of which positively correlated to the degree 
of self-reported early life adversity), which was associated 
with poor health behaviors when compared to fkbp5 GG 
homozygotes [162].

More studies are needed, however, to investigate sero-
tonin (5-HT) signalling and interactive effects of genetic 
polymorphisms in relation to the processing of specific 
memory types. Indeed, spatial memory versus emotional 
memory, or memory formation versus memory retrieval 
depend on different circuits and signalling pathways, 

Fig. 6 Chronic Psychological Stress: Proteinopathy and Synaptic Plasticity. During chronic stress (depicted by dark blue arrows), prolonged 
activation of GRs inhibits  Ca2+/Calmodulin dependent kinases IIα and can lead to DNA hypermethylation that supresses gene transcription 
and protein synthesis (epigenetic memory effect). Severe stress can also reduce the expression of the stathmin that is related to the cellular 
skeleton, mitosis, and synaptic plasticity, which in turn, relates to poor learning and apoptosis. As well, chronic stress/single prolonged stress can 
increase SNARE complex formation but alter neurotransmitters fusion that relates to excitotoxicity and pathological accumulation of aggregated 
proteins. Alteration of the protein-kinase dynamics increases risk for proteinopathy and, in turn, depression and neurodegenerative disorders. 
See Fig. 4 for the path [1]–[4]. cAMP, cyclic AMP; CREB, cAMP response element-binding protein; ERK, extracellular regulated kinase, aka 
mitogen-activated protein kinase (MAPK); GR, glucocorticoid receptors; GRE, glucocorticoid response elements;  PO3

2, phosphorylation
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and therefore may be differentially affected across dis-
tinct types, stages, and phases of stress. Such inquiry is 
also needed given that 5-HT receptors such as 5-HT1A, 
5-HT2A, and 5-HT7 play an important role in learn-
ing and memory [e.g., 174–182]. In addition, there is an 
association between the serotonin transporter-linked 
promoter region  (5HTTLPR) polymorphism and clini-
cal manifestations in neurodegeneration—for example, 
cognitive impairment variations in Alzheimer’s disease 
and delusions in Lewy body dementias [e.g., 183–186]. 
The evidence suggests that the 5HTTLPR variants mod-
ulate the levels of neural activation in the hippocampus 
and PFC during memory retrieval in acute psychosocial 
stress [184; see also 187] and can have a negative effect 
on memory via mediation of the HPA axis in the elderly 
[e.g., 188]. These data can explain the findings that the 
5HTTLPR polymorphism is a risk factor for developing 
mild cognitive impairment, which precedes Alzheimer’s 
disease [e.g., 189]. Therefore, it is one of the neurogenetic 
components of stress resilience and neuropsychiatric 
outcomes [e.g., 168, 190, 191].

Neurotransmitter signaling
Summary of the concepts: Stress-induced GR levels 
modulate neuronal plasticity and stress resilience via 
neurotransmitters:

a. Successful coping under stressful conditions relates 
to glutamatergic signalling.

b. During stress, emotional arousal can alter  Ca2+/
Calmodulin-dependent kinases involved in emo-
tional and cognitive processing.

c. The protein-kinase dynamics can play an important 
role in emotional homeostasis and cognitive reserve 
that may determine an individual’s susceptibility to 
neuropsychiatric disease.

d. Stress-induced increase in norepinephrine (NE) lev-
els affect memory in inverted U-shaped relation.

e. Polymorphisms in genes associated with dopamine 
levels can be a prospective screening tool for stress 
resilience capacity based on the phenotypic variabil-
ity of behavior and cognition patterns.

Takeaway: Pharmacotherapy based on neurotransmit-
ter signaling and administrated to block harmful effects 
of glucocorticoids on working memory could elimi-
nate memory consolidation of emotionally significant 
experiences.

Glutamate
During stress, hippocampal-dependent memory and 
learning can be influenced by emotional hyperarousal 
(i.e., anger, fear, or happiness). This phenomenon involves 

amygdala-mediated effects on memory consolidation 
and retention [192; see also 10, 193–197], which is a 
reinforcement of synaptic networking between neuronal 
ensembles (engrams) [e.g., 198, 199]. Engrams require 
dynamic variability (i.e., synaptic plasticity) that occurs 
during synaptic transmission: as hyperarousal initiates 
presynaptic input (i.e., a neurotransmitter release) and 
postsynaptic output (i.e., receptors expression), it boosts 
engrams [200]. This is how the amygdalar basolateral 
nucleus redirects attention toward aversive stressors (i.e., 
attentional bias), promotes encoding and consolidation 
for aversive memory, consolidates contextual and spatial 
information, and fortifies memory of novel contexts [e.g., 
36, 192, 201–211]. Hyperarousal in stress thus enables 
time-dependent associative memory, especially for aver-
sive information, which inhibits or eliminates previous 
memory and facilitates defensive behavior. Both mainte-
nance and inhibition of associative memory depend on 
synaptic plasticity and magnitude of hyperarousal [e.g., 
212]. Although initial emotional experience mediates 
plasticity, prolongated stress can suppress hippocampal 
plasticity and thus impair hippocampal processing [e.g., 
192, 201, 213–217].

The activation pattern of persistent changes (increase/
decrease) in synaptic transmission defines the commu-
nication between synapses, which can be in the form of 
long-term potentiation (upon increase) or long-term 
depression (upon decrease). Long-term potentiation 
follows presynaptic glutamate release and subsequent 
postsynaptic depolarization. The activation pattern in 
synaptic transmission is mediated by ionotropic (cation) 
channels, the NMDA- and AMPA-type glutamate recep-
tors, often via AMPA-receptor subunit composition [e.g., 
218–220].

Glutamate is the major excitatory neurotransmitter of 
the central nervous system, with exceptionally high neu-
ronal levels. Stress-activated GRs can increase glutamate 
release via pre- and post-synaptic mechanisms, which 
is a risk for hyperactivation of the glutamate recep-
tors [i.e., excitotoxicity; 4, 221–223]. The AMPA recep-
tors are transmembrane channels composed of subunits 
GluA1–4 that differ by intracellular C-terminal tails [e.g., 
224]. Each AMPA receptor subunit has a site that can 
bind glutamate; when two sites are occupied with glu-
tamate, the receptor’s pore (cation channel) opens and 
enlarges with an increase of occupied binding sites [e.g., 
225]. Released from the Golgi apparatus into the synaptic 
membrane, subunits of the AMPA receptors are reserved 
to initiate long-term potentiation due to their capacity 
for rapid redistribution from non-synaptic sites to the 
synapse, which is necessary for synaptic plasticity: if the 
postsynaptic AMPA receptors are inactive, synapses are 
silent [e.g., 224]. Distribution of the AMPA receptors on 
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the synaptic surface is bidirectionally regulated by pro-
tein interactions. Of particular interest are scaffolding 
proteins PSD-95 and SAP97 that regulate incorporation 
(i.e., postsynaptic density) and function of the AMPA 
receptors [e.g., 226], which is an essential process for 
both synaptic transmission and plasticity that underlines 
learning and memory [e.g., 227–229].

Chronic stress can reduce expression of the AMPA 
and NMDA receptors at the synaptic membrane due to 
their post-translational modification, such as increased 
ubiquitin–proteasome-dependent degradation of the 
receptor’s subunits [e.g., 223; see also 10]. However, 
stress can also increase the hippocampal expression of 
GluA2 subunits linked to enhanced spatial learning and 
memory [e.g., 230, 231]. Researchers have also shown 
that higher fear-memory retrieval in adult rats is associ-
ated with the amygdala-driven preferential upregulation 
of PSD-95 and GluA2, contrary to reduced fear-memory 
retrieval in juvenile rats that is linked to the upregula-
tion of kinases (PKMζ and PI3K), GluA2/3 and GluA1 in 
the dorsal hippocampus [232]. Stress-activated GRs can 
also alter glutamatergic signalling via increased GluA1 
phosphorylation (at Ser 831) that synchronizes with 
increased phosphorylation of the main NMDA receptor 
subunits (NR-1 and NR-2B) as integral functioning of the 
AMPA and NMDA receptors [233]; see also 234]. Suc-
cessful coping under stressful conditions is determined 
by integral AMPA/NMDA receptor function [233–238], 
whereas altered glutamatergic signalling is strongly asso-
ciated with psychiatric disorders and Alzheimer’s disease 
[e.g., 239, 240].

Calcium
Physiological and psychological arousal is modulated 
by the integration of interoceptive and exteroceptive 
inputs and is an essential factor for attention and cogni-
tive processing. Calcium  (Ca2+) influx is necessary for 
behavioural arousal states, and is mediated by NMDA 
receptors which facilitate  Ca2+ entry which triggers 
 Ca2+/Calmodulin-dependent kinases  (Ca2+/MK) to 
shape synaptic structure by the AMPA-receptors’ redis-
tribution—that is, translocation into the synaptic mem-
brane (see Figs.  4, 5, 6). This receptor’s redistribution 
promotes actin cytoskeleton involved in the dendrite (its 
spine) and axon development that is necessary for hip-
pocampus-dependent memory [e.g., 241, 242]. Thus, hip-
pocampus-dependent learning and memory require  Ca2+ 
influx, which is supported by several types of channels: 
(1) neural, high-voltage-activating aka N-type or Non-L 
involved in certain forms of LTP [e.g., 243]; (2) residual, 
immediate-voltage-activating aka R-type such as  Cav2.3 
α1E subunit involved in spatial memory formation [e.g., 
244]; and (3) transient, low-voltage-activating aka T-type 

such as  Cav3.2 subunit involved in context-associated 
memory retrieval [e.g., 245]. The  Ca2+ channels that are 
most highly distributed in dendrites are long-lasting, 
high-voltage-activating—that is, “triggered by strong and 
sustained depolarizations,” aka L-type  Ca2+ channels, 
which regulate “gene expression, synaptic efficacy, and 
cell survival” [246; see also 247].

Emotional arousal at the time of memory consolidation 
that promotes memory maintenance relates to intracel-
lular  Ca2+ influx via L-type of  Ca2+ channels, and  Ca2+ 
concentration is regulated mainly by  Ca2+/MK in the 
amygdala, hippocampus, and PFC. Electrochemically, it 
is seen at the arrival of an action potential that triggers 
 Ca2+  entry at the presynaptic neuronal terminal, which 
further activates vesicles with neurotransmitters (e.g., 
NE, glutamate, GABA, dopamine, serotonin) to release 
into the synaptic cleft (see Fig. 4). Released neurotrans-
mitters join the postsynaptic receptors, resulting in the 
synaptic transmission that can be excitatory (mainly 
glutamate-mediated and formed in dendritic protru-
sions, aka spines) or inhibitory (mainly GABA-mediated) 
membrane potential [e.g., 218; see also 248–250]. Dur-
ing memory retrieval,  Ca2+/MK activate proteasome-
mediated postsynaptic protein degradation—and thus 
labialize/weaken memory due to reduced synaptic effi-
cacy—whereas during memory reconsolidation,  Ca2+/
MK reroute synthetized de novo proteins to more active 
synapses [e.g., 251].

In the context of stress, activated GRs can regulate 
mitochondrial function of  Ca2+  holding capacity by 
translocating into mitochondria as a complex with the 
anti-apoptotic protein Bcl-2. This mechanism was found 
to be correlated to neuronal plasticity and stress resil-
ience in an inverted “U”-shape depending on corticoster-
one levels. Whereas low doses improve neural viability/
resilience, high doses (i.e., as it is observed in intense 
stress) augment kainic acid-induced toxicity of cortical 
neurons [252, see also 253], which partially explains the 
toxic neural effect of intense and chronic stress.

Chronic stress is also associated with dysfunction of 
the  Ca2+/MK cascade, which is seen in increased intra-
cellular  Ca2+ concentration and reduced  Ca2+/MK IIα 
expression in the medial PFC [e.g., rat models of PTSD, 
254]. Intracellular  Ca2+ elevation for a prolonged period 
is toxic and is associated with  Ca2+-dependent cellular 
mechanisms that alter dendritic spine density and neu-
ronal morphology of the pyramidal neurons in the medial 
PFC [255; see also 256].

In addition,  Ca2+/MK IIα is linked to cAMP response 
element-binding protein (CREB) activation (Figs. 1, 2, 3, 
4, 5, 6), which in turn inversely correlates to the amyg-
dala-induced anxiety-like behavior [257, also see 258–
261] and altered CREB-BDNF signaling pathway relates 
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to cognitive decline and Aβ toxicity in Alzheimer’s dis-
ease [260]. Antidepressants can regulate hippocam-
pal  Ca2+/MK IIα an adaptive way: namely, whereas 
short-term treatment inhibited the kinase activation 
in a concentration-dependent manner, chronic treat-
ment up-regulated  Ca2+/MK IIα [262]. Furthermore, 
in a mouse model of chronic social defeat stress, anxio-
lytic effects have been associated with the ERK/CREB/
BDNF signaling pathway [263]. Inhibited ERK activity in 
the hippocampus is a promising therapeutical target for 
depression [e.g., 264, 265]. In support of this possibility, 
treatment with resveratrol to prevent stress-induced cog-
nitive deficits relates to the upregulation of CREB/BDNF 
expression in the hippocampus in vivo and in vitro (i.e., 
in a rat model of chronic unpredictable mild stress; [266, 
see also 267, 268].

Protein‑kinase dynamics
Stress resilience related to glutamatergic transmis-
sion involves several protein complexes, most notable 
of which is the soluble N-ethylmaleimide-sensitive fac-
tor attachment protein receptor (SNARE) complex that 
regulates vesicular neurotransmitter release (i.e., fusion) 
in a final step of presynaptic vesicle traffic [e.g., 269–271, 
see Figs. 4, 5, 6]. The activity of SNARE complex poten-
tially relates to hippocampal “protein adaptation” and 
emotional homeostasis, and thus may determine an indi-
vidual’s susceptibility to stress and depression [e.g., 271–
273]. Further, chronic antidepressant treatment (i.e., with 
fluoxetine, reboxetine, or desipramine) has been found to 
increase neurogenesis and reduce stress-induced presyn-
aptic glutamate release linked to altered memory. Moreo-
ver, the mechanism underlying this effect is potentially 
associated with assembly of SNARE complex [e.g., 221–
223, 274–278].

Accumulating evidence suggests that the kinases (e.g., 
 Ca2+/MK IIα) and proteins (e.g., SNARE protein com-
plexes) play an important role in emotional homeostasis 
and cognitive reserve and may thus determine an indi-
vidual’s susceptibility to neuropsychiatric disorders. We 
hypothesize that stress resilience thus relates to protein-
kinase dynamics linked to cellular toxicity and apoptosis 
and, in turn, neurodegeneration. Specifically, in acute 
and intense stress, increased NE influx with emotional 
arousal appears to skew the interplay toward altered 
 Ca2+/MK IIα expression/activation that can affect the 
CREB pathway (Fig.  5), which relates to fear condition-
ing, anxiety, and attentional tunneling, and is potentially 
a risk factor for PTSD. In the context of severe chronic 
stress, the protein-kinase dynamic is potentially skewed 
toward proteinopathy of SNARE protein complex 
(related to glutamate-induced excitotoxicity, reviewed 

above) and stathmin (related to the cellular skeleton and 
mitosis) that impair synapses (Fig. 6).

Acute stress and  Ca2+/MK IIα In a rat model of PTSD, 
single prolonged stress (SPS) exposure altered free intra-
cellular  Ca2+ levels (initially increased but then decreased), 
increased calmodulin expression, and decreased  Ca2+/
MK IIα expression in the medial PFC (day 1 after SPS) 
[254]. Similar findings were obtained for the basolateral 
amygdala [279] and hippocampus [280]. Calmodulin and 
 Ca2+/MK IIα expressions have also been shown to initially 
increased but then decreased after SPS in the dorsal raphe 
nucleus, which was assumed to be associated with the 
activation of 5-HT1A receptor (related to neuronal inhi-
bition via suppression of adenylyl cyclase,  Ca2+/MK IIα, 
and AMPA receptors) [281; see also 282–284].

Severe chronic stress and  proteinopathy Recent find-
ings on hippocampal presynaptic membrane dysfunction 
in rat models of PTSD demonstrated that SPS disabled 
synaptic vesicle fusion (i.e., reduced expression of synap-
totagmin-1, the calcium-ion sensor for fusion), extended 
axon (i.e., increased expression in proteins, e.g., tau and 
β-tubulin, but decreased expression in p-tau and stath-
min), and potentially increased SNARE complex for-
mation (i.e., increased VAMP, STX1A, and Munc18-1 
expression) [273]. The formation of SNARE protein com-
plexes interacts with serotonin signalling regulated by 
fkbp5 gene associated with depression and low cortisol 
response to stress. In addition, SNARE protein complexes 
apparently play an important role in pathological accu-
mulation of aggregated proteins, for instance, α-synuclein 
in Parkinson’s disease [e.g., 285].

Another important protein is stathmin (aka oncopro-
tein 18) that regulates stability of the cellular cytoskeleton 
(i.e., destabilizes microtubules which have assembling-
disassembling dynamics) and cycle (e.g., cell proliferation 
and accumulation) [286, 287, see also 288]. Stathmin also 
displays a cytoprotective function (e.g., during cellular/
osmotic stress) [289], which is associated with cAMP-
dependent protein kinase signaling [e.g., 290]. These 
are significant synaptic factors, and stathmin mutation/
reductions relate to impaired memory, fear recognizing/
processing/learning, and altered behavior [e.g., 291–
296]. Altered expression in stathmin genes is associated 
with anxiety, poor learning, fear memories, and PTSD 
in animal models of stress [e.g., 297, 298; see also 299]. 
In one study, SPS reduced expression of stathmin in the 
hippocampus, medial PFC, and amygdala [294]. At the 
same time, stathmin alteration is implicated in neuro-
degeneration, such as Alzheimer’s disease [e.g., 297, 299, 
300], while stress can escalate apoptosis [e.g., 301]. The 
pathways of apoptosis can include but are not limited to: 
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(1) enzymes facilitating target proteins (e.g., receptors); 
(2) MAPK pathway; and (3) GRs [e.g., 302]. Addition-
ally, recall that chaperones, which, when dysregulated by 
stress, can also lead to abnormal protein properties. As 
a result, accumulated protein aggregation into toxic non-
native oligomers or fibrils/plaques (i.e., proteotoxicity) 
increases the risk for neurodegenerative disease. Con-
versely, behavioral stress-resilience (i.e., better coping) 
has been found to be associated with lower tau levels in 
older, amyloid positive adults without cognitive deficits 
[91].

Thus, increased levels of cortisol during acute stress 
can increase  Ca2+/MK IIα expression /activation (Fig. 5), 
whereas chronic stress can decrease  Ca2+/MK IIα expres-
sion/activation (Fig.  6). The stress response is regulated 
by 5-HT signaling via the ERK pathway associated with 
anxiety and PTSD due to 5-HT1 and 5-HT2A receptors’ 
competitive interaction [e.g., 178, 284]. This complex cel-
lular dysfunction in enzymes and proteins can explain 
the molecular pathway intersection between depression 
and anxiety, as well as stress-induced neurodegeneration, 
especially when accounting for the fact that  Ca2+/MK 
regulate apoptosis [e.g., 303], and similar to MAPK/ERK, 
are linked to tauopathies [e.g., 304–306].

Noradrenaline/norepinephrine
In acute stress, activation of the noradrenergic (LC-NE) 
system supports attention to the stressors [e.g., 1]. How-
ever, the noradrenergic signaling cascade can alter memory 
through activated cAMP-dependent protein kinase A via 
β-adrenoceptor activation, which is a fast response in con-
trast to a classical activation of GRs [e.g., 51, 206, 211, 307, 
308]. Belonging to group A of the G protein-coupled recep-
tor (GPCR) family, the β-adrenoceptor has a signature 
seven-transmembrane configuration [e.g., 309] in which 
cAMP/protein kinase A signalling pathways are shared 
with GR signalling [51, 205, 206; see Figs. 1 and 4]. Activa-
tion of β-adrenoceptors with elevated levels of NE leads to 
phosphorylation of AMPA receptor’s subunit GluA1 at the 
Ser 818 site which promotes the AMPA receptor’s func-
tions essential for long-term potentiation [e.g., ]. Subse-
quent synaptic incorporation of  Ca2+-permeable receptors 
(AMPA receptors containing GluA1, but missing GluA2) 
increases synaptic functionality [e.g., 220]. The distinc-
tions are that amygdalar β-adrenoreceptors signalling acti-
vates AMPA receptors required for memory acquisition 
and working memory during threat, and then ERK/MAPK 
signalling facilitates fear memory consolidation through 
gene transcription and protein synthesis [e.g., 311; see 
also 312]. Remarkably, glucocorticoids influence deficit of 
working memory and enhancement of memory consolida-
tion via a common activation of the noradrenergic signal-
ing pathway within the medial PFC. An inverted U-shaped 

relationship between NE levels and working memory has 
been observed [e.g., 313].

Further, the LC neuronal activity regulates attention 
and low tonic activity relates to drowsiness and dis-
engagement, whereas moderate-to-high tonic activity 
relates to arousal/hyperarousal [e.g., 314; see also 1]. In 
states of arousal without stress (i.e., an alert state with-
out hypercortisolemia), released NE optimizes working 
memory via α2A-receptors. However, during a stress state, 
elevated NE levels impair PFC function and memory per-
formance via α1- and β1-receptors [e.g., 315]. There is an 
inverted U-shaped dose–response relation that depends 
on the severity of the stressor and the condition that is 
observed in: (1) impaired memory for stressful life events 
with cortisol suppression, (2) timing-dependent learning 
improvement with moderate increase in cortisol con-
centration, and (3) impaired consolidation and recall in 
hypercortisolemia [e.g., 51, 211]. Therefore, pharmaco-
therapy (e.g., GRs and α1-/β-adrenoceptor antagonists, 
or protein kinase A inhibitors) administrated to block 
harmful effects of glucocorticoids on working memory 
can eliminate memory consolidation of emotionally sig-
nificant experiences [e.g., 51, 315].

Dopamine
Stress-induced activation of the HPA axis increases dopa-
mine neurotransmission in the PFC and activation of the 
downstream signalling cascades that negatively impact 
mood and cognition [e.g., 316; see also 317–320]. Indeed, 
it has been shown that emotional stimuli can influence 
working memory processing, manipulation, and main-
tenance that depend on the dorsolateral PFC, which is 
inversely coactive with the ventrolateral PFC [e.g., 321] 
and involve dopaminergic  D1-receptors signalling. Like 
the NE effect, dopamine levels alter working memory in a 
U-shaped manner [e.g., 315, 322]. Furthermore, we con-
sider polymorphism in genes associated with dopamine 
levels to be a prospective screening tool for stress resil-
ience capacity based on the dopamine-related phenotypic 
variability of behavior and cognition patterns.

For example, the  Val158Met polymorphism of catechol-
O-methyltransferase (COMT, which is related to dopa-
mine catabolism in the PFC and is regulated by estrogen) 
contributes to the complex Sex × Gene × Environment 
interactions affecting dopamine-dependent neurocog-
nition and anxiety [e.g., 323, 324]. The  Val158Met poly-
morphism has been found to influence decision-making 
following stressful life events [325]. As compared to 
the Val allele, the Met allele is linked to better working 
memory performance (including verbal, visuospatial, 
and novel social tasks) and poorer executive functioning, 
which is related to reduced dopamine levels in the PFC 
in children, adolescents, and adults [326, 327; see also 
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328]. COMT Val-allele load (COMT Val > Met), in turn, 
has been shown to be related to the dorsolateral PFC 
activity during working performance, such as encoding 
of new information, as well as temporal updating opera-
tions, but not in its subsequent retrieval. The distinctions 
are that high working memory load activates the PFC-
parietal-striatal network, where activity in the right dor-
solateral PFC is lesser in Val homozygotes than in ValMet 
individuals, but intermediate in Met homozygotes [329]. 
Relatively better performance in working memory is 
associated with decreased coactivity between the dorso-
lateral PFC and ACC for Val/Val genotype, but increased 
coactivity between the dorsolateral PFC-amygdala/hip-
pocampus for Met/Met genotype. This association corre-
lates to the regional cerebral blood flow in the amygdala 
and hippocampus for Val/Val, the parietal lobe for Val/
Met, and the thalamus for Met/Met [330].

Resaerchers have also found that COMT is associated 
with emotional dysregulation and that dopamine recep-
tor 2 genes can be a promising target of antipsychotic 
medications [e.g., 331]. Additionally, for monoamine 
oxidase A, H allele carriers have greater stress effects on 
the right anterior hippocampus hypoactivity and cor-
tisol hyperresponse as compared to the L allele carriers 
[332]. At the same time, the monoamine oxidase A poly-
morphism predicts aggressive and oppositional behavior, 
with better working memory capacity related to fewer 
externalizing symptoms in children and adolescents 
[333]. Polymorphism in genes associated with dopamine 
levels can also serve as genetic biomarkers for higher risk 
of developing Alzheimer’s disease [e.g., 334–336].

Sex hormone co‑signaling
Summary of the concepts: Estrogen and androgen signal-
ling influence memory and behavior, which is linked to 
stress resilience.
Takeaway: Estrogen effects are complex and play a dual, 
neuro-protective and neuro-harming role, as hormone 
levels fluctuate. Moreover, the dual effects are exhibited 
by androgen.

Estrogen signalling
Sex-differences in stress response and reactivity [e.g., 
337–339] can be explained by the fact that estrogen influ-
ences neurocognition, such as working memory, episodic 
memory, social memory, spatial memory, selective atten-
tion, and memory system bias [e.g., 115, 340–345]. Estro-
gen-facilitated hippocampal activity has been shown to 
exhibit a linear and inverted U-shaped dose–response 
effect in young women [e.g., 345]. Post-menopausal 
reduction of estradiol can be a risk factor for cognitive 
decline [e.g., 346]. However, estrogen plays a dual role 

and is either neuro-protective or neuro-harming in the 
stress response [339, 347; see also 348, 349].

We postulate that the estrogen effect is a func-
tion of the estrogen signalling type (nuclear or 
non-nuclear) × environment.

Nuclear signalling and acute stress
Like GRs, activated estrogen receptors (ERs) can affect 
memory and behavior through regulation of gene tran-
scription. When activated by binding estradiol, ERs 
can translocate to a nucleus and connect to estrogen 
response elements on DNA. This is a nuclear type of ERs 
activation with the direct genomic effects [e.g., 115, 342]. 
In other words, ERs dirrectly regulate transcription of the 
genes with cAMP response elements (CRE) in their pro-
moters (e.g., bdnf and CRF genes) and, in turn, activate 
or attenuate CREB function that enhances or impairs, 
respectively, memory formation [e.g., 350; Figs. 1 and 4].

Although elevated estradiol levels can promote rapid 
hippocampal CREB phosphorylation, during acute stress, 
the outcomes can be harmful [e.g., 351]. For example, 
the effect can be seen in the amplified stress response 
possibly due to the co-activation between ERs, GRs and 
CRH-1 receptor [e.g., 352], impaired fear extinction [e.g., 
353], and PFC-mediated working memory [354]. We pre-
dict that estrogen-related cognitive vulnerability is asso-
ciated with an altered  Ca2+/MK IIα—CREB pathway. In 
fact, estrogen can rapidly hyperactivate  Ca2+/MK IIα via 
nongenomic pathways in the hippocampus [e.g., 254, see 
also 255].

Non‑nuclear signalling and chronic stress
Circulating estradiol can also bind to membrane-specific 
estrogen receptors (mERα and nERβ) and G protein-
coupled ERs (GPERs). Activated mERs can trigger rapid 
(within seconds to 5  min) nongenomic mechanisms in 
the dorsal hippocampus that involve metabotropic glu-
tamate receptor GluA1 (aka GluR1) interactions. Next, 
indirect genomic effect can be seen within hours or days 
due to subsequently modulated CREB phosphorylation 
and CRE-dependent gene expression via MAPK [e.g., 
355–359]. Furthermore, ER signalling can influence NE 
signalling [e.g., 360; see also 361]. The mnemonic effect 
of ERs correlates with  D1-receptor dopamine activ-
ity [e.g., 234] and depends on a photoperiod (melatonin 
effect) that mediates estradiol-induced aggression [362, 
363; see also 339; Photoperiodic Plasticity section below].

Estrogen has been found to support cognitive resilience 
to chronic or repeated stress in females [e.g., 364–367]. 
For instance, in contrast to male rats, chronic restraint 
stress (2-h/day for a week) did not impair PFC functions 
in female rats due to ER-related protective effect seen in 
the preserved temporal order recognition memory and 
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AMPA/NMDA receptors subunits surface expression 
(i.e., GluR1/2 and NR1/2A/2B) [367].

The mechanistic parallelism is observed in neurological 
diseases. Specifically, in a mouse model of Alzheimer’s 
disease, GPER30 activation was found to have an ame-
liorative effect on object recognition memory [368] and 
selective activation of non-nuclear ERs normalized the 
mitochondrial apoptotic pathway via pathway-preferen-
tial estrogen (PaPE)-1 involved in MAPK and mTOR [e.g., 
369]. In a mouse model of stroke, selective non-nuclear 
ERs stimulation with PaPE-1 also decreased stroke sever-
ity and neuroinflammation in the brain in female mice 
[370]. Furthermore, ERs signalling is implicated in micro-
vascular mechanisms which serve both cerebro- and 
cardio-protection via mERα-mediated endothelial effects 
(i.e., rapid dilatation and repair acceleration) and mERβ- 
mediated synthesis of nitric oxide that play a hypotensive 
role [371–376; see also 358, 367, 377].

Hence, despite the neuro- and cardio-protective prop-
erties of estradiol, evidence indicates that high estrogen 
levels increase cognitive sensitivity to stress and affect 
disease risk. We thus hypothesize that in the context 
of an extreme, acute stress response, nuclear ERs act as 
transcription factors that enable stress effects related 
to activated  Ca2+/MK IIα (i.e., higher estrogen levels 
are harmful). This may partly explain why the preva-
lence of PTSD is twice as high in women than men [e.g., 
378–380]. We also hypothesize that in chronic stress, 
non-nuclear ERs regulate the translational status, via his-
tone modifications, to favour neuroprotective effects via 
PaPE-1 activation (i.e., higher estrogen levels are ben-
eficial). Accordingly, estradiol treatment of women that 
were exposed to interpersonal violence has been shown 
to attenuate negative effect of severe PTSD symptoms on 
fear habituation [e.g., 381]. Moreover, mERs are consid-
ered a novel treatment target for age-associated memory 
decline, stroke, and neurodegenerative diseases [e.g., 382, 
383].

Testosterone
Similar to estrogen, androgen displays dual effects. Spe-
cifically, testosterone can enable (1) hippocampal synapse 
formation and spatial memory or (2) inhibition of BDNF 
and reduction in astroglial density that affects synaptic 
plasticity in men. In contrast to estrogen, androgen is 
not associated with social memory but social recogni-
tion if a male conspecific [e.g., 384, for additional mne-
monic effects, see also 385–391]. The animal models of 
stress conditions, such as conditioned fear and inhibitory 
avoidance tasks, show that androgen’s metabolite 3α-diol 
can bind to mERβ and enhance hippocampal memory 
[392, 393]. Androgen is also implicated in observed 
sex-differences in stress reactivity related to impulsive 

behavior in rats, with males preferring large and delayed 
rewards and females preferring small and immediate 
rewards [394]. Clinically, this androgen effect may help 
explain why women have been found to be more affected 
by the frequency of the exposure to stress, whereas men 
appear to be more affected by the severity of stress [395; 
see also 339, 396].

Photoperiodic plasticity
Summary of the concepts: Altered circadian rhythm with 
shortened daylight can increase neurocognitive vulner-
ability to stress.
Takeaway: Pharmacotherapy aimed at melatonin and 
serotonin signalling has the potential to attenuate cogni-
tive deterioration associated with altered photoperiodic 
plasticity.

Changes in photoperiod can modulate stress-induced 
cognitive and affective disorders, such as those asso-
ciated with seasonal differences. For example, greater 
stress vulnerability was observed in a rat model during 
exposure to short days [e.g., 397]. The underlying mecha-
nism appears to be that shortened photoperiod can alter 
hippocampal volume and dendritic morphology related 
to the synaptic plasticity (i.e., decreased apical CA1 spine 
density and increased basilar CA3 spine density), result-
ing in poor spatial learning and memory [e.g., 398–400]. 
This mechanism involves activation of the melanocor-
tin-4 receptors that promote aversive memory formation 
via protein kinase A signalling [e.g., 220]. The melanocor-
tin-4 receptors are highly expressed in the medial amyg-
dala [401]. Moreover, their activation increases synaptic 
plasticity via the dendritic spine morphology and abun-
dance of the AMPA- receptors [e.g., 220]. The melano-
cortin-4 receptors activation is linked to rapid anxiogenic 
and anorectic effects in response to emotional stress 
[e.g., 401]. Stress-induced anxiety and depression can be 
aggravated by the melanocortin-4 receptors’ agonists and 
mitigated by the receptors’ antagonists [e.g., 402]. At the 
same time, the evidence suggests that reduced melatonin 
signalling is implicated in PTSD, psychiatric disorders, 
and neurodegenerative diseases [e.g., 397, 403–405]. 
Specifically, in PTSD, melatonin treatment can mitigate 
PTSD-like behaviors (related to contextual fear memory) 
and restore cortisol levels [e.g., 403], as well as improve 
spatial cognitive impairment via genomic mechanisms 
that increase CREB protein and mRNA levels in the hip-
pocampus [397]. Melatonin supplementation can also 
attenuate Alzheimer’s-like tau hyperphosphorylation 
and β-amyloid aggregation, slow down cognitive dete-
rioration, and improve sleep and sundowning in Alzhei-
mer’s disease [e.g., 405–410]. Furthermore, researchers 
have also demonstrated that melatonin effects relate 
to serotonin and dopamine co-signalling. For example, 
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antidepressant treatment with agomelatine that dis-
plays a synergistic effect on melatonergic  MT1/MT2 and 
serotonergic 5-HT2C receptors (agonist and antagonist, 
respectively) reduces stress-induced glutamate release 
in the PFC [e.g., 411, 412] and likely reduces depressive 
symptoms via circadian rhythms restoration following 
resynchronized sleep–wake cycle [e.g., 413, 414]. At the 
same time, circadian rhythmicity is bidirectionally inter-
connected to the stress system [e.g., 415] and relates to 
dopamine signalling [e.g., 416].

Psychoneuroimmunologic effects
Summary of the concepts: Psychological stress can trigger 
neuroimmune and proinflammatory responses that influ-
ence mood and cognitive decline. In addition, a compro-
mised immune system increases brain vulnerability to 
stress and neuropsychiatric conditions.
Takeaway: Stress coping and neuroinflammation are 
related. Indeed, psychological interventions can improve 
stress resilience via immunologic/anti-inflammatory 
mechanisms.

In reviewing stress-induced neuronal pathophysiology, 
it is important to highlight that brain networks commu-
nicate with the immune system to monitor and respond 
to many kinds of threats, including social, physical, and 
psychological stressors. Psychological stressors can trig-
ger anticipatory neuroimmune responses that reduce risk 
for injury and infection by upregulating inflammatory 
activity in the mere presence of social threat [e.g., 417–
419]. Therefore, even a “painful” feeling such as shame, 
but not guilt—which is an understanding that our actions 
have harmed somebody else—can increase proinflamma-
tory cytokine activity while not affecting cortisol levels 
in healthy adults [e.g., 420]. Consistent with this model, 
PTSD has been shown to be associated with immune 
dysregulation [e.g., 421, 422]. Vice versa, a compromised 
immune system increases brain vulnerability to stress. 
For example, after controlling for the effects of age, edu-
cation, and depression/anxiety, in men with HIV, it has 
been shown that stressful life events were related to cog-
nitive deficit, in contrast to men who were HIV-negative 
with the same level of stress perception [423; see also 
424]. Stress-associated verbal memory deficits have been 
found to be larger for HIV-positive as compared to HIV-
negative women [425].

Rat models of stress provide further insights into how 
stress coping and neuroinflammation interconnect. For 
example, exposure to brief social defeat induces circu-
lating inflammatory cytokines and primes neuroinflam-
matory responses (with the engagement of the LC-NE 
system) to a subsequent defeat exposure. Moreover, social 
defeat enhances neuroinflammation in the central amyg-
dala but reduces it in the dorsal raphe [426]. In a repeated 

resident-intruder stress model in rats, coping strategy 
affects psychosocial stress susceptibility associated with 
neuroinflammation measured by interleukin-1β: whereas 
passive coping was linked to greater inflammation, active 
coping and stress resistance was linked to lesser inflam-
mation [427, see also 428, 429].

Furthermore, the LC activity enables scanning atten-
tion and the analysis of behavior while actions are “on 
hold so the challenge can first be inspected” [e.g., 1]. It 
has also been shown that escape responses [56] and 
subordinate behavior are promoted by CRF influence 
yet supressed by opioid influence [428]. Hence, we may 
say that whereas stress-associated hyperarousal ena-
bles passive coping and neuroinflammation, emotional 
downregulation can facilitate active coping and reduce 
proinflammatory responses. In fact, research has shown 
that emotion regulation is associated with inflammatory 
activity levels [e.g., 430], and adequate coping strategies 
that alter cognitive appraisals and emotional responses 
can improve health outcomes [e.g., 431]. Given that 
neuroinflammation is implicated in neurocognitive/psy-
chiatric disorders and neurodegenerative diseases [e.g., 
429, 432–435], this research highlights the potential for 
psychological interventions such as cognitive and dialec-
tical behavior therapy to improve vulnerable brain func-
tion. Indeed, a meta-analysis showed that psychosocial 
interventions such as cognitive behavior therapy reliably 
improve immune system function for at least 6  months 
following treatment [436].

The active role in neuroinflammatory regulation 
belongs to the cerebral glia—that is, microglia and 
astrocytes—as well as the endotheliocytes and periph-
eral immunocytes. Here, “the primary immune surveil-
lance and macrophage-like activities” are performed by 
microglia [e.g., 437; see also 438], where neuroinflam-
matory processes are mediated via the LC-NE signaling 
system [e.g., 439]. Additionally, stress-induced changes 
exhibit sex-differences in the corticolimbic microglia. 
Specifically, dendritic re-modeling is seen mostly in the 
basolateral amygdala in females, as compared to wider 
microglial cell activation in males, which involve the 
basolateral amygdala, dorsal hippocampus, medial PFC, 
and corticolimbic projections [440].

Evidence also suggests that chronic social stress 
induces genome-wide transcriptional shifts characterized 
by increased proinflammatory and reduced anti-viral 
skewing via β-adrenergic signaling [441, 442]; this reso-
nates with the transcriptional changes evident in PTSD 
[443]. Particularly, this shift involves the upregulation 
of target genes for a proinflammatory immune response 
(e.g., NF-κB and AP-1) and a reciprocal downregula-
tion of target genes for an anti-inflammatory response 
(e.g., GRs coding gene NR3C1 and interferon response 
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factors). This proinflammatory shift explains why chronic 
social stressor exposure is related to high levels of mor-
bidity and mortality [441].

At the same time, single nucleotide polymorphisms 
in the promoters of proinflammatory immune response 
genes, such as IL6, influence DNA binding affinity that 
in turn affects the extent to which social threat-activated 
GATA1 transcription factor activity predicts longev-
ity. In this context, individuals with GATA1-sensitive 
G allele have been found to have higher levels of DNA 
binding affinity and IL6 gene expression—which is asso-
ciated with earlier mortality—as compared to their coun-
terparts with the GATA1-insensitive C allele [441, 444]. 
To complicate the matter, altered immune function-
ing/inflammatory responses (e.g., levels of IL-6, TNF-α, 
and C-reactive protein), as well as the polymorphisms 
in IL6, IL1β, IL10, and TNFIα, appear to contribute to a 
potential increased susceptibility to depression, cogni-
tive impairment, and dementia/Alzheimer’s disease [e.g., 
445–452]. Accordingly, modulating immunity appears to 
be a therapeutical target to support cognitive function in 
stress-related psychiatric conditions [e.g., 453].

Conclusion and application
The Global Burden of Disease Study 2019 revealed that 
“mental disorders remained among the top ten leading 
causes of burden worldwide, with no evidence of global 
reduction in the burden since 1990” [454, p. 137]. Moreo-
ver, the authors wrote that “Mental health needs are high 
but responses are insufficient and inadequate. […] About 
one in eight people in the world live with a mental disorder” 
[455, p. iv]; “there remains much to be done to ensure all 
people achieve the highest standard of mental health and 
well-being. Action must be taken” [454, p. v]. Such conclu-
sions expose a critical gap between the sizable magnitude 
of this public health crisis and our lackluster global effort 
to identify novel therapies that can successfully address 
the problem. To begin to address this issue, we reviewed 
research aimed at better understanding how stress affects 
the brain in a way that hampers integral aspects of mental 
health, including psychosocial well-being, cognitive func-
tioning, and mental resilience.

This research shows that psychological stress increases 
the risk for cognitive problems, and the development of 
serious neurological and psychiatric disorders [e.g., 3, 5–
8, 456]. The exact mechanisms of stress-related cognitive 
deterioration and neuropsychiatric outcomes have yet to 
be clarified. To provide a fruitful path forward, we applied 
a multilevel approach that discerns shared cellular mech-
anisms underlying stress reactivity and neurocognitive 
processing (Fig.  7). In doing so, we elucidated the mul-
tilevel determinants of stress resilience, which may sup-
port clinical interventions. However, to realize the full 

potential of this work for addressing stress-related dis-
ease burden, these models will need to be translated into 
novel therapeutics that are safe, effective, widely accessi-
ble, and affordable.

Level 1: Psychobiology
Stress reactivity is a function of a person’s cognitive 
appraisal and allostatic status; moreover, stress-induced 
habituation and sensitization are associated with harmful 
effects. Access to psychosocial education and services in 
community-based settings can enhance individual stress 
resilience. Psychotherapeutic interventions, such as cog-
nitive behavior therapy, can help people cognitively reap-
praise their ability to deal with a stressor and, in turn, 
reduce their perceived stress severity and health risks 
[e.g., 1].

Level 2: Epigenetics
The genetic polymorphism × sex × environment (e.g., 
level of social safety) interplay is associated with interin-
dividual differences in stress-responses outcomes, such 
as morbidity risk and longevity [e.g., 441]. Proactive 
screening and proper support are necessary for individu-
als at particular risk of mental illness (e.g., genetic testing 
for physiological and behavioral traits, supporting mar-
ginalized groups, [e.g., 457]).

Level 3: Neurotransmitters
Stress can affect multiple neurotransmitters related to 
neuronal plasticity and stress resilience. We hypothesize 
that the stress effects can be determined by the enzyme-
protein dynamics. Specifically, anxiety and PTSD follow-
ing acute and/or severe stress can be driven by altered 
 Ca2+/MK IIα pathway, which is a fast nongenomic 
response with indirect epigenetic effect involving CREB 
mechanism (Fig. 5). We also hypothesize that depression 
and neurodegeneration following chronic stress can be 
driven by SNARE protein complex accumulation in syn-
aptic membranes linked to excito-/proteo-toxicity and 
slow genomic effect involving ERK/MAPK (Fig. 6). Phar-
macotherapy based on neurotransmitter signaling and 
administrated to block harmful effects of glucocorticoids 
can help stress resilience and neurocognitive functioning.

Level 4: Sex hormones
Estrogen and androgen signalling influence memory and 
behavior, which is linked to stress resilience. We hypoth-
esize that dual, neuro-protective or neuro-harming, role 
of estrogen effect is a function of the estrogen signalling 
type (nuclear or non-nuclear) × environment (exposure 
to acute or chronic stress). Advanced mental health care 
requires promoted sex/gender-specific medicine.
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Level 5: Circadian rhythm
Altered circadian rhythm with shortened daylight can 
increase neurocognitive vulnerability to stress. Address-
ing circadian dysrhythmia and associated alterations in 
melatonin and serotonin signalling can support brain 
functions.

Level 6: Psychoneuroimmunology
There is a bidirectional association between stress coping 
and immunity. Interventions aimed at enhancing immu-
nity and emotional intelligence may have a protective 
impact on neurocognitive resilience to stress.

Additional research is needed to test the hypotheses 
described. To this end, the present model provides a 
fruitful avenue for investigating aspects of cellular neu-
ropathophysiology that can help advance our understand-
ing of features of the stress responses that contribute to, 
and interplay with, psychiatric and neurological disor-
ders. The outlined determinants of stress resilience can 
thus assist cross-disciplinary clinical and translational 
neuroscience to promote brain and mind health.
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