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Abstract

Background: Biobehavioral factors such as social isolation and depression have been

associated with disease progression in ovarian and other cancers. Here, the authors

developed a noninvasive, exosomal RNA profile for predicting ovarian cancer dis-

ease progression and subsequently tested whether it increased in association with

biobehavioral risk factors.

Methods: Exosomes were isolated from plasma samples from 100 women taken

before primary surgical resection or neoadjuvant (NACT) treatment of ovarian

carcinoma and 6 and 12 months later. Biobehavioral measures were sampled at

all time points. Plasma from 76 patients was allocated to discovery analyses in

which morning presurgical/NACT exosomal RNA profiles were analyzed by elastic

net machine learning to identify a biomarker predicting rapid (≤6 months) versus

more extended disease‐free intervals following initial treatment. Samples from

a second subgroup of 24 patients were analyzed by mixed‐effects linear models

to determine whether the progression‐predictive biomarker varied longitudinally

as a function of biobehavioral risk factors (social isolation and depressive

symptoms).

Results: An RNA‐based molecular signature was identified that discriminated be-

tween individuals who had disease progression in ≤6 months versus >6 months,
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independent of clinical variables (age, disease stage, and grade). In a second group of

patients analyzed longitudinally, social isolation and depressive symptoms were

associated with upregulated expression of the disease progression propensity

biomarker, adjusting for covariates.

Conclusion: These data identified a novel exosome‐derived biomarker indicating

propensity of ovarian cancer progression that is sensitive to biobehavioral variables.

This derived biomarker may be potentially useful for risk assessment, intervention

targeting, and treatment monitoring.
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INTRODUCTION

Ovarian cancer is most commonly diagnosed at an advanced stage,

and most patients show clinical disease progression within 5 years

despite primary cytotoxic chemotherapy.1 In addition to clinical and

molecular aspects of the tumor,2 patient biobehavioral characteris-

tics such as depression and social isolation have been linked to dif-

ferential disease progression.3–5 Preclinical studies have identified

multiple biological pathways by which biobehavioral characteristics

influence key mechanisms that promote tumor growth and progres-

sion including neuroendocrine‐mediated effects on angiogenesis,

inflammation, invasive capacity, and epithelial–mesenchymal polari-

zation.6–11 However, the translation of these mechanistic observa-

tions to clinical settings has been hampered by lack of access to

residual tumor tissues and their microenvironmental context

following primary surgical resection. To facilitate investigation of

how biobehavioral factors may influence postsurgical tumor pro-

gression, we sought to develop an easily accessible biomarker that

will permit assessment of changes in the tumor over time without the

invasiveness of repeat biopsies.

Biological profiling of plasma exosomes is an emerging technol-

ogy for in vivo monitoring of tumor biology and response to treat-

ment and is frequently characterized as a noninvasive liquid

biopsy.12,13 Exosomes are nano‐sized cell‐derived vesicles with

genomic properties of their parent cells that are released into the

extracellular environment and can propagate signaling both locally

and at a distance.12 Examination of the molecular content of plasma‐
derived exosomes provides a promising strategy for development of

a progression‐related biomarker to probe the biology of cancer as it

continues to unfold posttreatment.14 In the context of biobehavioral

influences, we previously found that plasma exosomes from socially

isolated ovarian cancer patients showed greater mesenchymal‐
characteristic RNA profiles,15 suggestive of epithelial–mesenchymal

transition (EMT), and paralleling results from analyses of resected

tumor RNA profiles.16 The ready availability of plasma samples pro-

vides an opportunity for longitudinal analyses to clarify how changes

in biobehavioral processes (e.g., resulting from interventions) might

change ongoing biological risk processes in the aftermath of primary

surgery. However, such analyses would require a validated exosomal

RNA biomarker of disease progression risk.

Here, we developed a molecular biomarker to predict the future

progression of ovarian cancer based on exosomal RNA in a subset of

patients with available progression data. Then, in a separate subset of

patients we tested whether changes in social isolation and/or

depressive mood were associated with changes in this disease pro-

gression propensity biomarker.

MATERIALS AND METHODS

Participants

Women with suspected ovarian cancer were recruited from three

University Medical Centers, two in the Midwest and one in Florida,

as part of a larger study examining biobehavioral factors and tumor

progression in ovarian cancer. Inclusion criteria included primary

invasive epithelial ovarian, peritoneal or fallopian tube carcinomas,

or carcinosarcoma. Histology was confirmed by pathology review.

Patients were excluded who were under 18 years of age, had a

history of previous cancer within the last 5 years, a comorbid

condition with known immune effects, current pregnancy, regular

use of systemic steroid medication in the last month, metastases to

the ovaries from other organs, or inability to answer questions;

these exclusion criteria were established for the larger study. Pa-

tients recruited before 2013 were excluded for a history of cancer;

after that date, patients were only excluded for cancer in the last

5 years. Data from a subgroup of 90 women were used in dis-

covery analyses to establish a molecular measure predicting

progression‐free survival. Of these 90 exosome samples, 78 yielded

valid RNA sequencing data (12 had either insufficient RNA or RNA

that was too severely degraded to yield useful results) and two had

recurrence data that was nonevaluable, yielding a final sample of

76 for the first subgroup. Data from a second subgroup of 31

women were used to test whether this molecular signature showed

longitudinal elevation as a function of biobehavioral risk factors.

Several individual samples failed to yield valid RNA data, but RNA
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data were available on at least one of the time points for all 31

individuals. However, some individuals were missing data on other

measures that were the targets of analysis (social support,

depression) or covariates that reduced the analyzable number of

cases to 24 in the case of social support and 22 in the case of

depression. Therefore, the final sample was 24 for the second

subgroup. For the first subgroup of patients, the earliest date of

treatment initiation was in December 2004, and all progression

information was censored on December 31, 2016 or last contact

before that time, and primary treatment began at least 3 years

before the date of censoring. Treatment for the second subgroup

was initiated between April 15, 2016 and September 25, 2017. All

procedures were approved by institutional review boards at the

clinical sites, and all patients provided signed informed consent.

Procedures

Participants were recruited at an initial clinic visit and completed

psychosocial assessment and demographic information at home

within approximately 2 weeks before surgical resection or initiation

of neoadjuvant therapy (NACT). Blood sampling was done the

morning of surgery or NACT and during the patient's 6‐month and

12‐month clinic follow‐ups. Follow‐up psychosocial surveys were

administered in conjunction with the 6‐ and 12‐month visits. Social

support was assessed using the attachment subscale of the Social

Provisions Scale (SPS‐Attachment).17 This subscale measures

perceived emotional connection with others and has been the mea-

sure most closely associated with disease‐related biomarkers in our

previous research. Based on prior studies,3,18–20 we defined poor

social support as an SPS‐Attachment score of less than 15 (the me-

dian value). Depressive symptoms were assessed by the Center for

Epidemiological Studies Depression Scale (CES‐D), a 20‐item self‐
report scale measuring frequency of depressive symptoms over the

last week.21 The CES‐D is considered a valid and reliable assessment

for depressive symptoms in cancer patients.22 Scores 16 or higher

are considered to be consistent with clinical depression23; therefore

patients were categorized as having high/low depressive symptoms

based on this cutoff.

Clinical disease characteristics (e.g., grade, stage, histology, body

mass index [BMI], and date of progression) were extracted from

medical records. Demographic and clinical characteristics (age, race,

alcohol use, smoking, and BMI) were assessed as potential con-

founding factors. Alcoholic beverages were coded as ≤2 drinks/day

(0) versus ≥3 drinks/day (1); smoking was coded as never (0) versus

ever (1). Progression‐free survival (PFS) was calculated between date

of tumor resection or initiation of neoadjuvant chemotherapy and

date of the first recurrence or progression, or last recorded contact

before the date of censoring when the patient had not progressed, or

date of death.24 Progression was documented by computed tomog-

raphy, initiation of new therapy, or clinical evidence of progression.

The 6‐month cutoff was defined as 190 days or less (see Figure S1 for

a summary of study time points).

Exosome RNA profiling analyses

Detailed information about exosome data extraction and RNA

profiling is provided in the Supporting Methods. For the discovery‐
based biomarker development analyses for study 1, normalized

transcript abundance values were screened to identify all gene

transcripts showing r > 0.40 association with disease progression

class (1 = PFS ≤6 months; 0 otherwise) using SAS PROC CORR. The

resulting 30 transcripts served as predictor features for the elastic

net machine learning algorithm implemented in SAS PROC GLMSE-

LECT, using progression class as the criterion with predictor selection

by random 5‐fold external cross‐validation, 40 selection cycles, and

L2 tuning by log grid search over the interval 0 to 1. The elastic net is

a commonly used method for deriving predictors when the number of

candidate variables greatly exceeds the number of cases.25 The

resulting composite biomarker (continuous value) was a linear com-

bination of 22 elastic net selected genes; this was analyzed for point

biserial correlation with disease progression class using SAS PROC

CORR, and dichotomized at a cost‐weighted value of 0.25 (i.e.,

assuming it was three times as important to identify a high‐risk case

as to misidentify a low‐risk case) to quantify association with disease

progression class using SAS PROC FREQ. SAS PROC GLM was used

for linear model analyses relating biomarker values to disease pro-

gression class while controlling for covariates. PROC MIXED was

used for mixed effect linear model analyses quantifying longitudinal

change in biomarker values from presurgical baseline to 6‐ and

12‐months postsurgery while controlling for nonindependence of

repeated measures using a fully saturated (unstructured) variance‐
covariance matrix on residuals.

Study 2 analyses (biobehavioral prediction analyses) quantified

associations between longitudinal variation in progression biomarker

values and biobehavioral risk factors in a separate data set. Gene

expression data were derived as described above for study 1, with

the multi‐gene progression biomarker scored using SAS PROC

GLMSELECT to apply the algorithm developed in study 1. SAS PROC

MIXED was then used for mixed effect linear model analyses

examining the association between biobehavioral risk factors (social

isolation and depressive symptoms) over time and longitudinal vari-

ation in biomarker values from presurgical baseline to 6‐ and 12‐
months post‐surgery while controlling for clinical characteristics

(stage, grade, and histological subtype) and patient demographics

(age, BMI, race, and smoking history) and accounting for noninde-

pendence of repeated measures using a fully saturated (unstruc-

tured) variance–covariance matrix on residuals.

RESULTS

As shown in Table 1, most patients had advanced‐stage (83%), high‐
grade (91%), serous (79%) cancer. The average age was 62 (�10,

range 27–85) years and 95% of patients were White non‐Hispanic

(two African American and three White Hispanic). The average BMI

was 27.8 (�6.2; range, 17.7–50.3). Average social support was below
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TAB L E 1 Demographics and clinical characteristics

Characteristic Mean (SD) or n (%)

Age, mean (SD) years (n =100) 61.7 (�10.4) years; range, 27–85 years

Race

White 98 (98.0%)

Black 2 (2.0%)

Ethnicity: Hispanic 3 (3.0%)

Marital status

Married/with partner 70 (70.0%)

Education (n = 99)

High school or less 40 (40.0%)

Trade school/some college 31 (31.0%)

College grad/postgraduate 28 (28.0%)

Body mass index 27.74 (�6.18); range, 17.72–50.26

Ever smoked 25 (25.0%)

Alcohol use (>2 drinks) (n = 98) 0 (0.0%)

Stage

I 3 (3.0%)

II 5 (5.0%)

III 83 (83.0%)

IV 9 (9.0%)

Grade

High 91 (91.0%)

Serous 79 (79.0%)

Cytoreduction

Suboptimal 18 (18.8%)

Neoadjuvant therapy 3 (3.0%)

Time to progression (n = 76)a

≤6 months (≤190 days) 13 (17.1%)

>6 months (236 days–10.47 years) 63 (82.9%)

Mean time to progression (n = 76)a 2.61 (�2.66) years (range, 30 days–10.47 years), 0.95 years median

Social supportb

Baseline (n = 24) 14.54 (�1.89)

6 months (n = 23) 13.96 (�2.62)

12 months (n = 22) 14.45 (�2.40)

Depressionb

Baseline (n = 25) 17.16 (�12.67)

6 months (n = 23) 11.70 (�8.54)

12 months (n = 22) 10.73 (�9.66)

aStudy 1 subgroup only.
bStudy 2 subgroup only.
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the median and remained relatively constant over time, with at least

34% of participants showing substantial social isolation (SPS‐
Attachment scores <15) at each time point. Average depressive

symptoms were in the mildly depressive range, 15.4 (�10.4) at study

entry and remained at a mild level over time.

Study 1: discovery analysis identifying an exosome
RNA biomarker of ovarian cancer progression

To define a “liquid biopsy” measure of disease progression pro-

pensity in ovarian cancer, we conducted machine learning analyses

of genome‐wide messenger RNA (mRNA) profiles in plasma exo-

some samples collected pretreatment from 76 women with known

disease progression times. Cases were classified as short PFS

≤6 months; n = 13, 17%) versus longer PFS (>6 months; n = 63,

83%) and the elastic net machine learning algorithm was applied to

identify a composite biomarker based on pre‐surgical exosome

RNA profiles that optimally predicted subsequent postsurgical

progression class (i.e., short PFS vs. longer PFS). Results of this

analysis identified a 22‐gene predictive biomarker that was strongly

correlated with progression class (r = 0.95; p < .0001) and

correctly classified 98.6% of cases (75 of 76) with good sensitivity

(92%) and specificity (100%). In multi‐variable linear model ana-

lyses, the biomarker's predictive accuracy emerged above and

beyond the effects of disease grade and histological subtype (se-

rous vs. non‐serous) as well as age, BMI, race, and smoking history

(adjusted r = 0.95, p < .0001). The 22‐gene composite biomarker

was approximately 2.4‐fold greater in cases with a short PFS

compared to those with a longer PFS (difference: 1.25 log2 mRNA

abundance units � SE 0.07, t(65) = 17.95, p < .0001) (Figure 1).

As would be expected for a valid measure of disease progression,

additional plasma samples collected longitudinally from the same

patients at 6 and 12 months postsurgery showed elevated

biomarker levels compared to pretreatment baseline (F [2122]

= 132.65, p < .0001) with a modest increase over the first

6 months (difference: 0.07 � 0.06 log2 mRNA abundance, t(122)

= 1.19, p = .2346) and a more substantial increase by 12 months

(difference: 1.37 � 0.09, t(122) = 15.08, p < .0001). The overall

association of progression biomarker levels with time since surgery

was strong, r = 0.70 (p < .0001).

Study 2: biobehavioral influences on exosome
progression biomarker

After deriving a “liquid biopsy” measure of disease progression

biology in study 1, we next sought to use that measure in longitudinal

analyses assessing how biobehavioral risk factors (social isolation and

depressive symptoms) might affect disease progression biology in the

interval between surgery/neoadjuvant treatment and subsequent

clinical progression. To ensure that these analyses did not capitalize

on chance by using the same data set to derive the biomarker

outcome and to test its association with other potential predictors,

these analyses were conducted in a second subgroup of 31 cases that

were collected from the same clinical context as in study 1 but for

whom clinical disease and survival end points were not yet available.

In these analyses, mixed effect linear models analyzed changes in

exosome RNA biomarker activity from pre‐surgical baseline to 6‐ and

12‐months post‐surgery, and additionally tested whether social

isolation or depressive symptoms might be associated with higher

levels of the biomarker while controlling for potentially confounding

effects of disease stage, tumor grade, tumor histological subtype, age,

BMI, race, and smoking history. In analyses of 62 longitudinal

observations from 24 individuals for whom social isolation data were

available, results showed significantly elevated levels of the exosome

RNA progression biomarker over time in those who were socially

isolated (b = 0.174, t(16) = 4.26, p = .0006) (Figure 2A). In analyses of

58 longitudinal observations from 22 individuals for whom depres-

sive symptom data were available, results also showed significantly

elevated levels of the exosomal RNA progression biomarker over

time in those with high levels of depressive symptoms (b = 0.145,

t(14) = 2.83, p = .0134) (Figure 2B). In multi‐variable ana-

lyses examining both depression and social isolation simultaneously,

social isolation continued to be associated with significantly elevated

progression biomarker values while controlling for depressive

symptoms (b = 0.233, t(13) = 4.66, p = .0004), whereas depressive

symptoms were not significantly associated with the biomarker

values after controlling for social isolation (b = 0.092, t(13) = 1.81,

p = .0941).

F I GUR E 1 Discovery analysis: exosome RNA composite score

for ovarian cancer patients who progressed in ≤6 months versus
>6 months
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DISCUSSION

This study used machine learning discovery analyses to develop a

novel multi‐gene biomarker of rapid ovarian cancer progression

based on exosome mRNA samples obtained at the time of primary

surgery/NACT and subsequently used that newly‐derived biomarker

to quantify in a separate data set the impact of biobehavioral risk

factors (social isolation and depressive symptoms) on progression‐
associated biology in the aftermath of primary surgery/NACT but

before ascertainment of clinical progression. Results identified social

isolation in particular as a significant risk factor for elevations in

progression‐associated biology in the aftermath of primary surgery/

NACT and indicated that such effects emerge above and beyond the

correlated effects of depressive symptoms, clinical disease, and de-

mographic characteristics. In addition to clarifying the molecular

pathways through which biobehavioral risk factors may influence the

progression of ovarian cancer,15,16,20 these results identify a “liquid

biopsy” biomarker that may be useful in other contexts such as

clinical progression and treatment monitoring as well as a surrogate

marker for outcomes in clinical trials.

The exosome biomarker of disease progression identified here

included multiple gene transcripts that have previously been impli-

cated in ovarian cancer pathogenesis and progression (e.g., CD109,

JAM3, MCPH1, PCMT1, PRDM2/RIZ1, PRSS21, and RHEB). These

involve a wide range of tumor‐relevant biological processes including

DNA and protein repair, gene regulation, cell‐cycle regulation,

intercellular adhesion, angiogenesis, and chemoresistance (see

Table S1 for details). Approximately half of the transcripts identified

as survival‐predictive had no previous studies indicating a role in

ovarian cancer and may represent promising candidates for future

mechanistic research (e.g., ADGRL3, EXOC5, HECTD1, LPGAT1, LTA4H,

NTAN1, SBF1, SCOC, and TMEM104).

Biobehavioral factors such as social isolation and depressive

mood have been previously associated with modulation of molecular

events in the tumor microenvironment and with poorer clinical out-

comes in a variety of cancers.11,26–31 These factors operate via

neuroendocrine pathways including the sympathetic nervous system

and the hypothalamic pituitary adrenal axis,32 both of which can

activate transcription factors supporting tumor progression.7,10,33–36

Previously reported associations of social isolation with higher levels

of tumor norepinephrine18 and with greater cyclic adenosine mono-

phosphate response element‐binding protein signaling15,20,27 are

consistent with a potential role for beta‐adrenergic signaling in the

relationships observed here.

Prior research linked social isolation to EMT polarization in pri-

mary tumor in both ovarian and breast cancer patients15,16,27 but was

limited by the use of indicator genes derived from breast cancer cell

lines to define EMT‐related profiles.37 The present findings are

unique in using a biomarker specifically relevant to disease pro-

gression in ovarian cancer patients and extending these findings to a

longitudinal setting.

Exosomes mediate intercellular communication in the female

reproductive system.14 In ovarian cancer, exosomes carry micro-

RNAs, proteins, and other molecules that can promote chemo-

resistance,38,39 induce the EMT,38,39 and mediate tumor escape from

the immune response.39 Ovarian tumor‐derived exosomes promote

establishment of a pre‐metastatic niche by (1) converting local

fibroblasts into cancer‐associated fibroblasts that enhance perme-

ability of the basement membrane and remodel stroma to create a

more favorable environment for tumor growth; (2) downregulating

the local immune response, including inhibition of both natural killer

cell and T‐cell signaling and induction of macrophage polarization

thus promoting tumor escape from the immune response; and (3)

stimulating angiogenesis, invasion, and migration.40

Previous studies have identified cellular‐based biomarkers

associated with ovarian cancer progression, but their use has been

hampered by the inability to do longitudinal sampling to monitor

changes in risk over time.41–46 Because exosomes are stable, plen-

tiful, and can indicate pre‐metastatic niche formation, an exosomal

molecular biomarker as a “liquid biopsy” may have ready clinical

utility.40 Several approaches for exosomal profiling for ovarian cancer

diagnosis or surveillance have been suggested.14,47 Following further

validation, our derived biomarker could potentially be applied to

determine risk of future cases of ovarian cancer by (1) collecting

mRNA abundance data on predictor transcripts from plasma exo-

somes to monitor changes in risk over time, and (2) applying the

predictive algorithm to assess likelihood of disease progression. This

biomarker prediction can be used for potential purposes including

F I GUR E 2 Biobehavioral study: exosome RNA composite score

for socially isolated versus socially integrated ovarian cancer
patients (A) and for patients with low (Center for Epidemiological
Studies Depression Scale [CES‐D] <16) versus elevated depressive

mood (CES‐D ≥16) (B) over time
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allocating patients to different treatments or monitoring those pre-

dicted to show rapid disease progression and rapidly assessing the

impact of various treatments or other interventions by monitoring

changes in biomarker predictions of disease progression, rather than

waiting for clinical disease progression.

Limitations

It is possible that some of the observed transcriptional activity may

have been from exosomes derived from normal cells. Previous

research has indicated that in cancer patients, tumor is the primary

source of circulating exosomes,48 which have similar molecular

composition as the cells from which they were derived.49 As addi-

tional techniques are developed to isolate tumor‐specific exosomes,

these methods can be used to further validate these findings. In

addition, exosomes originating from nontumor cells may well

contribute to disease progression by several possible mechanisms,

including changes in vascular biology, stromal cells, inflammation, and

other changes in nontumor tissues that affect the development of

metastatic niches and other aspects of disease progression.10 The

present findings have focused on potential biobehavioral modulation

of exosomal content and future research will be needed to assess

other processes such as exosome production, release, and concen-

tration. Although depressive symptoms and social support indepen-

dently predicted the propensity biomarker, it is also possible that the

reverse is true, and this is a potential limitation of the data. Addi-

tionally, the sample size was limited and additional validation in

larger, more diverse independent samples is needed.

Clinical significance

The present study identifies an exosome‐based biomarker of ovarian

cancer progression and finds that biobehavioral factors of social

isolation and depressive mood predict its variation over time. This

biomarker may have additional utility as an easily accessible measure

of clinical disease progression risk that can be used for intervention

targeting and clinical monitoring.
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